Skip to main content

Advertisement

Log in

The Impact of Silicon on Photosynthetic and Biochemical Responses of Sugarcane under Different Soil Moisture Levels

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Increasing drought stress is one of the most limiting factors for agricultural crop productivity across the world. Silicon (Si) has been known to augment plant protection against drought stress. In this experiment, the responses of sugarcane with silicon application to drought stress for photosynthetic and biochemical activities were investigated. Three water regimes [75 ± 5, 50 ± 5 and 25 ± 5% of soil water content capacity (SWCC) from 70 to 115 days after transplanting] and six silicon levels such as 0, 20, 40, 60, 80 and 100 g CaO.SiO2 pot−1 equivalent to 0, 194, 387, 581, 774 and 968 mg Si kg−1 soil, respectively, were applied. This experiment was arranged in a completely randomized block design. It was found that water stressed plants with silicon application showed increasing trends in photosynthetic CO2 assimilation (~2–106%), stomatal conductance (~8–113%), transpiration (~13–274%) and chlorophyll fluorescence yield (~0.3–10%) of 75 ± 5, 50 ± 5 and 25 ± 5% of SWCC as compared to the controls without Si application. The silicon application improved the plant growth under water stress, accompanied with the up-regulation in leaf relative water content (~2–8%), photosynthetic pigments (~2–35%), activities of catalase (ca. 12–91%), peroxidase (ca. 7–30%) and superoxide dismutase (ca. 3–96%) enzymes. These results indicate that Si fertilizer plays an important role in mitigating the negative effects of drought stress on sugarcane plant growth by improving water status, photosynthetic parameters and activating the antioxidant machinery. Findings demonstrated the silicon application an efficient strategy to improve sugarcane tolerance to drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  2. Etesami H (2018) Can interaction between silicon and plant growth promoting rhizobacteria benefits in alleviating abiotic and biotic stresses in crop plants? Agric Ecosyst Environ 253:98–112

    Article  CAS  Google Scholar 

  3. Veatch-Blohm ME (2007) Principles of plant genetics and breeding. Crop Sci 47:1763–1763

    Article  Google Scholar 

  4. Carmen B, Roberto D (2011) Soil bacteria support and protect plants against abiotic stresses. Shan a (edn), abiotic stress in plants mechanisms and adaptations. Pub. In Tech, pp 143–170

  5. Jewell MC, Campbell BC, Godwin ID (2010) Transgenic plants for abiotic stress resistance. Transgenic Crop Plant:67–132

  6. Dinh TH, Watanabe K, Takaragawa H, Nakabaru M, Kawamitsu Y (2017) Photosynthetic response and nitrogen use efficiency of sugarcane under drought stress conditions with different nitrogen application levels. Plant Prod Sci 20:412–422

    Article  CAS  Google Scholar 

  7. Jangpromma N, Songrsi P, Thammasiririak S, Jaisil P (2010) Rapid assessment of chlorophyll content in sugarcane using a SPAD chlorophyll meter across different water stress conditions. Asian J Plant Sci 9:368–374

    Article  CAS  Google Scholar 

  8. Graca JP, Rodrigues FA, Farias JRB, Oliveira MCN, Hoffmann-Campo CB, Zingaretti SM (2010) Physiological parameters in sugarcane cultivars submitted to water deficit. Braz J Plant Physiol 22:189–197

    Article  Google Scholar 

  9. Barbosa AM, Guidorizi KA, Catuchi TA, Marques TA, Ribeiro RV, Souza GM (2015) Biomass and bioenergy portioning of sugarcane plants under water deficit. Acta Physiol Plant 37:137–142

    Article  CAS  Google Scholar 

  10. Ramesh P (2000) Sugarcane breeding institute, Coimbatore, India effect of different levels of drought during the formative phase on growth parameters and its relationship with dry matter accumulation in sugarcane. J Agron Crop Sci 185:83–89

    Article  Google Scholar 

  11. Zhao D, Li Y (2015) Climate change and sugarcane production: potential impact and mitigation strategies. Int J Agro 2015:1–10. https://doi.org/10.1155/2015/547386

    Article  CAS  Google Scholar 

  12. Inman-Bamber NG, Smith DM (2005) Water relations in sugarcane and response to water deficits. Field Crop Res 89:185–202

    Article  Google Scholar 

  13. Azevedo RA, Carvalho RF, Cia MC, Gratao PL (2011) Sugarcane under pressure: an overview of biochemical and physiological studies of abiotic stress. Trop Plant Biol 4:42–51

    Article  CAS  Google Scholar 

  14. Inman-Bamber NG, Bonnett GD, Spillman MF, Hewitt ML, Jackson J (2008) Increasing sucrose accumulation in sugarcane by manipulating leaf extension and photosynthesis with irrigation. Aust J Agric Res 59:13–26

    Article  CAS  Google Scholar 

  15. Arnon DI, Stout PR (1939) The essentiality of certain elements in minute quantity for plants, with special reference to copper. Plant Physiol 14:371–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Epstein E (1999) Silicon. Ann Rev Plant Physiol Mol Biol 50:641–664

    Article  CAS  Google Scholar 

  17. Liang Y, Nikolic M, Bélanger RR, Gong H, Song A (2015) Silicon in agriculture: from theory to practice. Springer, Dordrecht

    Book  Google Scholar 

  18. Epstein E, Bloom AJ (2005) Mineral nutrition of plants: Principles and Perspectives2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  19. Mcginnity P (2015) Silicon and its role in crop production. PhD thesis. http://www.planttuff.com/wp content/uploads/2015/12/silicon-agricultureiiterature-rvw-1.pdf

  20. Zhu Y, Gong H (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agro Sust Develop 34:455–472

    Article  CAS  Google Scholar 

  21. Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci 91:11–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goldemberg J (2008) The Brazilian biofuels industry. Biotech Biofuels 1:6

    Article  CAS  Google Scholar 

  23. Bassi B, Menossi M, Mattiello L (2018) Nitrogen supply influences photosynthesis establishment along the sugarcane leaf. Sci Rep 8:2327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Dias MOS, Cunha MP, Jesus CDF, Rocha GJM, Pradella JGC, Rossell CEV, Maciel Filho R, Bonomi A (2011) Second generation ethanol in Brazil: can it compete with electricity production? Bioresource Tech 102:8964–8971

    Article  CAS  Google Scholar 

  25. Pereira SC, Maehara L, Machado CMM, Farinas CS (2015) 2G ethanol from the whole sugarcane lignocellulosic biomass. Biotech Biofuels 8:44

    Article  CAS  Google Scholar 

  26. Moore PH (1995) Temporal and spatial regulation of sucrose accumulation in the sugarcane stem. Funct Plant Biol 22:661–679

    Article  CAS  Google Scholar 

  27. Coombs J (1984) Sugarcane as an energy crop. Biotech Genetic Eng Rev:1

  28. Strain HH, Svec WA (1966) Extraction, separation, estimation and isolation of chlorophylls. In: Vernon LP, Seely GR (eds) The chlorophylls. Academic Press, New York, pp 21–66

    Chapter  Google Scholar 

  29. Yamasaki S, Dillenburg LC (1999) Measurements of leaf relative water content in Araucaria angustifolia. Rev Bras Fisiol Veg 11:69–75

    Google Scholar 

  30. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  31. Yang JC, Zhang JH, Wang ZQ, Zhu QS, Wang W (2001) Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol 127:315–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  33. Maehly AC, Chance B (1954) The assay of catalase and peroxidase. Methods of Biochemical Analysis, edn. D. Glick. John Wiley & Sons, Inc, Hoboken, NJ, pp 357–425

    Google Scholar 

  34. Klapheck S, Zimmer I, Cosse H (1990) Scavenging of hydrogen peroxide in the endosperm of Ricinus communis by ascorbate peroxidase. Plant Cell Physiol 31:1005–1013

    CAS  Google Scholar 

  35. Giannopolitis CN, Ries SK (1977) Superoxide dismutases. I Occurrence in higher plants Plant Physiol 59:309–314

    CAS  PubMed  Google Scholar 

  36. Bray EA (2002) Abscisic acid regulation of gene expression during water deficit stress in the era of the Arabidopsis genome. Plant Cell Environ 25:153–161

    Article  CAS  PubMed  Google Scholar 

  37. Passioura J (2007) The drought environment: physical, biological and agricultural perspectives. J Exp Bot 58:113–117

    Article  CAS  PubMed  Google Scholar 

  38. Rizwan M, Ali S, Ibrahim M, Farid M, Adrees M, Bharwana SA, Zia-ur-Rehman M, Qayyum MF, Abbas F (2015) Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review. Environ Sci Pollut Res 22:15416–15431

    Article  CAS  Google Scholar 

  39. Linag Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 146:422–428

    Article  CAS  Google Scholar 

  40. Verma KK, Wu KC, Singh P, Malviya MK, Singh RK, Song X-P, Li YR (2019) The protective role of silicon in sugarcane under water stress: photosynthesis and antioxidant enzymes. Biomed J Sci Tech Res 15(2):1–7

    Google Scholar 

  41. Vu JCV, Allen LH, Gesch RW (2006) Up-regulation of photosynthesis and sucrose metabolism enzymes in young expanding leaves of sugarcane under elevated growth CO2. Plant Sci 171:123–131

    Article  CAS  Google Scholar 

  42. De Souza AP et al (2008) Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant Cell Environ 31:1116–1127

    Article  PubMed  CAS  Google Scholar 

  43. McCormick AJ, Cramer MD, Watt DA (2006) Sink strength regulates photosynthesis in sugarcane. New Phytol 171:759–770

    Article  CAS  PubMed  Google Scholar 

  44. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  45. Cha-um S, Kirdmanee C (2010) Effects of water stress induced by sodium chloride and mannitol on proline accumulation, photosynthetic abilities and growth characters of eucalyptus (Eucalyptus camaldulensis Dehnh.). New For 40:349–360

    Article  Google Scholar 

  46. Sales CR et al (2013) Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature. Plant Physiol Biochem 73:326–336

    Article  CAS  PubMed  Google Scholar 

  47. Liu H, Sultan MARF, Liu X, Zhang J, Yu F, Zhao H (2015) Physiological and comparative proteomic analysis reveals different drought responses in roots and leaves of drought tolerant wild wheat (Triticum boeoticum). PLoS One 10:e0121852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Oxborough K, Baker N (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components–calculation of qP and Fv-/Fm-; without measuring Fo. Photosynth Res 54:135–142

    Article  CAS  Google Scholar 

  49. Song X, Zhou G, Xu Z, Lv X, Wang Y (2016) Detection of photosynthetic performance of Stipa bungeana seedlings under climate change using chlorophyll fluorescence imaging. Front Plant Sci 6:1254

    PubMed  PubMed Central  Google Scholar 

  50. Stirbet A, Govindjee Z (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B 104:236–257

    Article  CAS  PubMed  Google Scholar 

  51. Chen W, Yao X, Cai K, Chen J (2011) Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol Trace Elem Res 142:67–76

    Article  CAS  PubMed  Google Scholar 

  52. Silva MA, Jifon JL, Silva JAG, Santos CM, Sharma V (2014) Relationships between physiological traits and productivity of sugarcane in response to water deficit. J Agric Sci 152:104–118

    Article  Google Scholar 

  53. Sabater B, Rodriquez MI (1978) Control of chlorophyll degradation indetached leaves of barley and oat through effect of kinetin on chlorophyllase levels. Physiol Plant 43:274–276

    Article  CAS  Google Scholar 

  54. Flower DJ, Ludlow MM (1986) Contribution of osmotic adjustment to the dehydration tolerance of water stressed pigeon pea [Cajanas cajan (L) Milsp] leaves. Plant Cell Environ 9:33–40

    Google Scholar 

  55. Sairam RK (1994) Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian J Exp Biol 32:594–597

    Google Scholar 

  56. Li C, Nong Q, Solanki MK, Liang Q, Xie J, Liu X, Li Y, Wang W, Yang L, Li Y (2016) Differential expression profiles and pathways of genes in sugarcane leaf at elongation stage in response to drought stress. Sci Rep 6:25698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kaya C, Tuna L, Higgs D (2006) Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. J Plant Nutr 29:1469–1480

    Article  CAS  Google Scholar 

  58. Gadallah MAA (2000) Effects of indole-3-acetic acid and zinc on the growth, osmotic potential and soluble carbon and nitrogen components of soybean plants growing under water deficit. J Arid Environ 44:451–467

    Article  Google Scholar 

  59. Shi Y, Zhang Y, Han W, Feng R, Hu Y, Guo J, Gong H (2016) Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L. Front Plant Sci 7:196

    PubMed  PubMed Central  Google Scholar 

  60. Kim YH, Khan AL, Kim DH, Lee SY, Kim KM, Waqas M, Jung HY, Shin JH, Kim JG, Lee IJ (2014) Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biol 14:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Yin L, Wang S, Tanaka K, Fujihara S, Itai A, den X, Zhang S (2016) Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L. Plant Cell Environ 39(2):245–258

    Article  CAS  PubMed  Google Scholar 

  62. Verma KK, Singh RK, Song QQ, Singh P, Zhang BQ, Song X-P, Chen G-L, Li Y-R (2019) Silicon alleviates drought stress of sugarcane plants by improving antioxidant responses. Biomed J Sci Tech Res 17(1):1–7

    Google Scholar 

  63. Vilela RD, Bezerra BKL, Froehlich A, Endres L (2017) Antioxidant system is essential to increase drought tolerance of sugarcane. Ann Appl Biol 171:451–463

    Article  CAS  Google Scholar 

  64. Osipova S, Permyakov A, Permyakova M, Pshenichnikova T, Börner A (2011) Leaf dehydroascorbate reductase and catalase activity is associated with soil drought tolerance in bread wheat. Acta Physiol Plant 33:2169–2177

    Article  CAS  Google Scholar 

  65. Sairam RK, Deshmukh PS, Saxena DC (1998) Role of antioxidant systems in wheat genotypes tolerance to water stress. Biol Plant 41:387–394

    Article  CAS  Google Scholar 

  66. Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  67. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  68. Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  CAS  PubMed  Google Scholar 

  69. Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA (2011) Involvement of cytosolic ascorbate peroxidase and cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62:2599–2613

    Article  CAS  PubMed  Google Scholar 

  70. Kim Y-H, Khan AL, Waqas M, Lee I-J (2017) Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: a review. Front Plant Sci 8

Download references

Acknowledgements

We wish to warmly thank Guangxi Academy of Agricultural Sciences (GXAAS), Nanning, Guangxi, China for providing the necessary facilities for this study. This study was supported in part by the Guangxi R and D Program Fund (GK17195100), Fund for Guangxi Innovation Teams of Modern Agriculture Technology (gjnytxgxcxtd-03-01), and Fund of Guangxi Academy of Agricultural Sciences (2015YT02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Rui Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, K.K., Liu, XH., Wu, KC. et al. The Impact of Silicon on Photosynthetic and Biochemical Responses of Sugarcane under Different Soil Moisture Levels. Silicon 12, 1355–1367 (2020). https://doi.org/10.1007/s12633-019-00228-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00228-z

Keywords

Navigation