Skip to main content
Log in

Aged Refuse Filled Bioreactor Using Like a Biological Treatment for Sugar Mill Wastewater

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

The serious pollution problem that exists nowadays in aquatic environments has been caused, mainly, by intensive industrial activity. For this reason, this article presents the results obtained in the treatability tests of sugar mill wastewater, using an aged refuse filled bioreactor, (Ø = 0.2 m, h = 3.0 m, of PVC), which was fed under four hydraulic loads (50, 100, 150 and 200 L/m3 day), each of them for a period of 8 weeks. The efficiency of the system was evaluated by the removal of the chemical oxygen demand (COD) and color. The average values in the influent were 2473 ± 437 mg/L for COD and 1048 ± 287 Pt–Co for color. The highest COD removal (98.8%) was achieved with a hydraulic load of 100 L/m3 day, generating an effluent with an average value of 26.8 mg COD/L. In the case of color, a removal of 84.2% was achieved. The results obtained show the evaluated system as an efficient, novel and friendly alternative in its operation, with minimum sludge and odors generation in the treatment of wastewater generated in the cane sugar extraction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • APHA. 2012. Standard Methods for the examination of water and wastewater. Washington, DC: American Public Health Association; American Water Works Association; Water Environment Federation.

    Google Scholar 

  • ASTM C702-98. 2003. Standard practice for reducing samples of aggregate to testing size. American Society for Testing and Materials (ASTM).

  • ASTM D5231-92. 2016. Standard test method for determination of the composition of unprocessed municipal solid waste. American Society for Testing and Materials (ASTM).

  • Bautista-Ramírez, J.A., R.F. Gutiérrez-Hernández, H.A. Nájera-Aguilar, R.I. Martínez-Salinas, P. Vera-Toledo, J.A. Araiza-Aguilar, R. Méndez-Novelo, and M.N. Rojas-Valencia. 2018. Biorreactor Empacado con Materiales Estabilizados (BEME), como pretratamiento para lixiviados de rellenos sanitarios. Revista Mexicana de Ingeniería Química 17(2): 561–571.

    Article  Google Scholar 

  • Bustos, G., M.A. Carrizales, E. Cervantes, X. Vecino, and A.B. Moldes. 2014. Treatment of wastewater from sugarcane using entrapped activated carbon. CyTA: Journal of Food 12(2): 189–194.

    CAS  Google Scholar 

  • CANADESUCA. 2017. 4to. Informe estadístico del sector agroindustrial de la caña de azúcar en México 2016-2017. Comité Nacional para el Desarrollo Sustentable de la Caña de Azúcar. SAGARPA.

  • CONAGUA. 2006. Comisión Nacional del Agua. Estadísticas del agua en México Edición 2006. Mexico City.

  • Erabee, I.K., and S. Ethaib. 2018. Treatment of contaminated landfill leachate using aged refuse biofilter medium. Oriental Journal of Chemistry 34(3): 1441–1450.

    Article  CAS  Google Scholar 

  • Fito, J., N. Tefera, H. Kloos, and S.W.H. Van Hulle. 2018. Physicochemical properties of the sugar industry and ethanol distillery wastewater and their impact on the environment. Sugar Tech 21(2): 265–277.

    Article  Google Scholar 

  • Fito, J., N. Tefera, and S.W.H. Van Hulle. 2019. An integrated treatment technology for blended wastewater of the sugar industry and ethanol distillery. Environmental Processes 6(2): 475–491.

    Article  CAS  Google Scholar 

  • Gondudey, S., and P.K. Chaudhari. 2020. Influence of various electrode materials in electrocoagulation efficiency: Application in treatment of sugar industry effluent. Sugar Tech 22(1): 15–27.

    Article  CAS  Google Scholar 

  • Hamoda, M.F., and H.A. Al-Sharekh. 1999. Sugar wastewater treatment with aerated fixed-film biological systems. Water Science and Technology 40(1): 313–321.

    Article  CAS  Google Scholar 

  • Hampannavar, U.S., and C.B. Shivayogimath. 2010. Anaerobic treatment of sugar industry wastewater by upflow anaerobic sludge blanket reactor at ambient temperature. International Journal of Environmental Sciences 1(4): 631–639.

    CAS  Google Scholar 

  • Hongjiang, L., Z. Youcai, S. Lei, and G. Yingying. 2009. Three-stage aged refuse biofilter for the treatment of landfill leachate. Journal of Environmental Sciences 21(1): 70–75.

    Article  Google Scholar 

  • Kushwaha, J.P. 2015. A review on sugar industry wastewater: Sources, treatment technologies, and reuse. Desalination and Water Treatment 53(2): 309–318.

    Article  CAS  Google Scholar 

  • Lebrero, R., L. Bouchy, R. Stuetz, and R. Muñoz. 2011. Odor assessment and management in wastewater treatment plants: A review. Critical Reviews in Environmental Science and Technology 41(10): 915–950.

    Article  Google Scholar 

  • Li, H., Y. Gu, Y. Zhao, and Z. Wen. 2010. Leachate treatment using a demonstration aged refuse biofilter. Journal of Environmental Sciences 22(7): 1116–1122.

    Article  CAS  Google Scholar 

  • Nacheva, P.M., G.M. Chavez, J.M. Chacon, and A.C. Chuil. 2009. Treatment of cane sugar mill wastewater in an upflow anaerobic sludge bed reactor. Water Science and Technology 60(5): 1347–1352.

    Article  CAS  Google Scholar 

  • Nähle, C. 1990. Purification of waste water in sugar factories-anaerobic and aerobic treatment, N-elimination. Zuckerindustrie 115(1): 27–32.

    Google Scholar 

  • Nájera-Aguilar, H.A., R.F. Gutiérrez-Hernández, J. Bautista-Ramírez, R.I. Martínez-Salinas, D. Escobar-Castillejos, R. Borraz-Garzón, M.N. Rojas-Valencia, and G. Giácoman-Vallejos. 2019. Treatment of low biodegradability leachates in a serial system of aged refuse-filled bioreactors. Sustainability. https://doi.org/10.3390/su11113193.

    Article  Google Scholar 

  • NOM-001-SEMARNAT-1996. 1996. Norma Oficial Mexicana. Límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales. México: Secretaría de Medio Ambiente y Recursos Naturales. Mexico City, Mexico.

  • Patil, P.U., B.P. Kapadnis, and V.S. Dhamankar. 2003. Decolorisation of synthetic melanoidin and biogas effluent by immobilised fungal isolate of Aspergillus niger UM2. International Sugar Journal 105(1249): 8–13.

    Google Scholar 

  • Pradeep, N.V., S. Anupama, J.M. Arun Kumar, K.G. Vidyashree, P. Lakshmi, K. Ankitha, and J. Pooja. 2014. Treatment of sugar industry wastewater in anaerobic downflow stationary fixed film (DSFF) reactor. Sugar Tech 16(1): 9–14.

    Article  CAS  Google Scholar 

  • Sahu, O. 2019. Electro-oxidation and chemical oxidation treatment of sugar industry wastewater with ferrous material: An investigation of physicochemical characteristic of sludge. South African Journal of Chemical Engineering 28: 26–38.

    Article  Google Scholar 

  • Sahu, O.P., and P.K. Chaudhari. 2015. The characteristics, effects, and treatment of wastewater in sugarcane industry. Water Quality, Exposure and Health 7(3): 435–444.

    Article  Google Scholar 

  • Sahu, O., B. Mazumdar, and P.K. Chaudhari. 2019. Electrochemical treatment of sugar industry wastewater: Process optimization by response surface methodology. International Journal of Environmental Science and Technology 16(3): 1527–1540.

    Article  CAS  Google Scholar 

  • Sahu, O., D.G. Rao, A. Thangavel, and S. Ponnappan. 2018. Treatment of sugar industry wastewater using a combination of thermal and electrocoagulation processes. International Journal of Sustainable Engineering 11(1): 16–25.

    Article  Google Scholar 

  • Sanchez, E., and L. Travieso. 1988. Distillery wastewater treatment by high rate anaerobic filters. Biotechnology Letters 10(7): 521–522.

    Article  CAS  Google Scholar 

  • Singh, N.K., A.A. Kazmi, and M. Starkl. 2015. A review on full-scale decentralized wastewater treatment systems: Techno-economical approach. Water Science and Technology 71(4): 468–478.

    Article  CAS  Google Scholar 

  • Singh, P.K., M. Tripathi, R.P. Singh, and P. Singh. 2019. Treatment and recycling of wastewater from sugar mill. In Advances in biological treatment of industrial waste water and their recycling for a sustainable future, ed. R. Singh and R. Singh, 199–223. Singapore: Springer.

    Chapter  Google Scholar 

  • World Bank. 1999. Pollution prevention and abatement handbook, sugar manufacturing. Washington, DC: The World Bank.

    Google Scholar 

  • Xie, B., S. Xiong, S. Liang, C. Hu, X. Zhang, and J. Lu. 2012. Performance and bacterial compositions of aged refuse reactors treating mature landfill leachate. Bioresource Technology 103(1): 71–77.

    Article  CAS  Google Scholar 

  • Zhao, Y., Z. Lou, Y. Guo, and D. Xu. 2007. Treatment of sewage using an aged-refuse-based bioreactor. Journal of Environmental Management 82(1): 32–38.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Gutiérrez-Hernández.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nájera-Aguilar, H.A., Mayorga-Santis, R., Gutiérrez-Hernández, R.F. et al. Aged Refuse Filled Bioreactor Using Like a Biological Treatment for Sugar Mill Wastewater. Sugar Tech 23, 201–208 (2021). https://doi.org/10.1007/s12355-020-00881-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-020-00881-4

Keywords

Navigation