Skip to main content

Advertisement

Log in

Composting of Sweet Sorghum Bagasse and its Impact on Plant Growth Promotion

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

The present study was carried out to optimize a protocol to rapidly decompose sweet sorghum bagasse and to evaluate the bagasse compost for plant growth promotion (PGP) in sweet sorghum. A total of ten cellulose-degrading microbes were screened for decomposing sweet sorghum bagasse, of which three (Myceliophthora thermophila ATCC 48104, Aspergillus awamori and Bacillus subtilis ATCC 6633) decomposed bagasse efficiently in 60 days. When these potential microbes were characterized for their in vitro PGP traits, all were found to produce indole acetic acid, cellulase, lipase (except M. thermophila) and siderophore (only A. awamori) and solubilize phosphorous (except M. thermophila). The bagasse compost prepared with the three microbes was evaluated for PGP on sweet sorghum under greenhouse conditions. The results showed that the bagasse compost prepared with potential microbes significantly and consistently enhanced PGP traits including the plant height (37–44%), leaf weight (63–81%), shoot weight (38–66%), root weight (87–89%), leaf area (75–83%) and root length (37–48%) at 35 days after sowing (DAS); shoot weight (40–58%) and root weight (24–38%) at 70 DAS; and shoot weight (30–46%), panicle weight (40–51%), seed number (20–62%) and seed weight (37–65%) at harvest over the bagasse compost prepared without microbes. Among the three potential strains, A. awamori and M. thermophila significantly and consistently enhanced all the PGP traits compared to B. subtilis. It is concluded that sweet sorghum bagasse can be decomposed rapidly and the bagasse compost prepared with microbes can be successfully used for PGP in sweet sorghum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adebooye, O.C., and V. Singh. 2007. Effect of cooking on the profile of phenolics, tannins, phytate, amino acid, fatty acid and mineral nutrients of whole-grain and decorticated vegetable cowpea (Vigna unguiculata L. Walp). Journal of Food Quality 30: 1101–1120.

    Article  CAS  Google Scholar 

  • Aira, M., F. Monroy, and J. Dominguez. 2007. Earthworms strongly modify microbial biomass and activity triggering enzymatic activities during vermicomposting independently of the application rates of pig slurry. Science of the Total Environment 385: 252–261.

    Article  CAS  Google Scholar 

  • Anderson, T.H., and K.H. Domsch. 1989. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biology and Biochemistry 21: 471–479.

    Article  Google Scholar 

  • Anjaiah, V., N. Koedam, B. Nowak-Thompson, J.E. Loper, M. Hofte, J.T. Tambong, and P. Cornelis. 1998. Involvement of phenazines and anthranilate in the antagonism of Pseudomonas aeruginosa PNA1 and Tn5 derivative toward Fusarium spp. and Pythium spp. Molecular Plant-Microbe Interactions 11: 847–854.

    Article  CAS  Google Scholar 

  • AOAC. 2000. Official methods of analysis. 17th ed. Gaithersburg: Association of Official Analytical Chemists International.

    Google Scholar 

  • Bhattacharya, A., S. Chandra, and S. Barik. 2009. Lipase and protease producing microbes from the environment of sugar beet field. Indian Journal of Agricultural Biochemistry 22: 26–30.

    CAS  Google Scholar 

  • Brooks, P.C., A. Landman, G. Pruden, and D.S. Jenkinson. 1985. Chloroform fumigation and the release of soil nitrogen; a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry 17: 837–842.

    Article  Google Scholar 

  • Casida, L.E. 1977. Microbial metabolic activity in soil as measured by dehydrogenase determinations. Applied and Environmental Microbiology 34: 630–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty, U., B.N. Chakraborty, M. Basnet, and A.P. Chakraborty. 2009. Evaluation of Ochrobactrum anthropi TRS-2 and its talc-based formulation for enhancement of growth of tea plants and management of brown root rot disease. Journal of Applied Microbiology 107: 625–634.

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty, U., B.N. Chakraborty, A.P. Chakraborty, K. Sunar, and P.L. Dey. 2013. Plant growth-promoting rhizobacteria mediated improvement of health status of tea plants. Indian Journal of Biotechnology 12: 20–31.

    CAS  Google Scholar 

  • Chander, G., S.P. Wani, S. Gopalakrishnan, A. Mahapatra, S. Chaudhury, C.S. Pawar, M. Kaushal, and A.V.R.K. Rao. 2018. Microbial consortium culture and vermicomposting technologies for recycling on-farm wastes and food production. Integrated Journal of Recycling of Organic Waste in Agriculture 7: 99–108.

    Article  Google Scholar 

  • De Bertoldi, M., G. Vallini, A. Pera, and F. Zucconi. 1985. Technological aspects of composting including modelling and microbiology. In Composting of agricultural and other wastes, ed. J.K.R. Gasser, 27–41. Barking, Essex: Elsevier Applied Science Publishers.

    Google Scholar 

  • Ellis, R.J., T.M. Timms-Wilson, and M.J. Bailey. 2000. Identification of conserved traits in fluorescent Pseudomonads with antifungal activity. Environmental Microbiology 2: 274–284.

    Article  CAS  PubMed  Google Scholar 

  • Fiske, C.H., and Y. Subbaraow. 1925. A colorimetric determination of phosphorous. The Journal of Biological Chemistry 66: 375–400.

    Article  CAS  Google Scholar 

  • Fourti, O., N. Jedidi, and A. Hassen. 2011. Comparison of methods for evaluating stability and maturity of co-composting of municipal solid wastes and sewage sludge in semi-arid pedo-climatic condition. Natural Science 3: 124–135.

    Article  CAS  Google Scholar 

  • Gautam, S.P., P.S. Bundela, A.K. Pandey, M.K. Awasthi, and S. Sarsaiya. 2010. Composting of municipal solid waste of Jabalpur city. Global Journal of Environmental Research 4: 43–46.

    CAS  Google Scholar 

  • Gopalakrishnan, S., S. Pande, M. Sharma, P. Humayun, B.K. Kiran, D. Sandeep, M.S. Vidya, K. Deepthi, and O. Rupela. 2011a. Evaluation of actinomycete isolates obtained from herbal vermicompost for biological control of Fusarium wilt of chickpea. Crop Protection 30: 1070–1078.

    Article  CAS  Google Scholar 

  • Gopalakrishnan, S., B.K. Kiran, P. Humayun, M.S. Vidya, D. Deepthi, and O. Rupela. 2011b. Biocontrol of charcoal-rot of sorghum by actinomycetes isolated from herbal vermicompost. African Journal of Biotechnology 10: 18142–18152.

    Google Scholar 

  • Gopalakrishnan, S., V. Srinivas, B. Prakash, R. Vijayabharathi, and O. Rupela. 2014. Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth-promotion traits in rice. Microbiological Research 169: 40–48.

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan, S., R. Vijayabharathi, A. Sathya, H.C. Sharma, V. Srinivas, R.K. Bhimineni, S.V. Gonzalez, T.M. Melø, and N. Simic. 2016a. Insecticidal activity of a novel fatty acid amide derivative from Streptomyces species against Helicoverpa armigera. Natural Product Research 30: 2760–2769.

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan, S., V. Srinivas, S. Srinivasan, and C.V. Sameer Kumar. 2016b. Plant growth-promotion and biofortification of chickpea and pigeonpea through inoculation of biocontrol potential bacteria, isolated from organic soils. SpringerPlus 5: 1882.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grassi, G. 2001. Sweet sorghum—One of the best world food-feed-energy crop. Published by ETA Florence and WIP-Munich in the framework of LAMNET Thematic Network funded by the European Commission, DG Research, Programme “Confirming the international role of community research” (Project no. ICA4-CT-2001-10106).

  • Haas, D., and G. Defago. 2005. Biological control of soil borne pathogens by fluorescent Pseudomonads. Nature Reviews Microbiology 3: 307–319.

    Article  CAS  PubMed  Google Scholar 

  • Haas, D., C. Keel, J. Laville, M. Maurhofer, T. Oberhansli, U. Schnider, C. Vosard, B. Wuthrich, and G. Defago. 1991. Secondary metabolites of Pseudomonas fluorescens strain CHAO involved in the suppression of root diseases. In Advances in molecular genetics of plant-microbe interactions, vol. I, ed. I.H. Hennecke and D.P.S. Verma, 450–456. Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Hefnawy, T.H. 2011. Effect of processing methods on nutritional composition and anti-nutritional factors in lentils (Lens culinaris). Annals of Agricultural Sciences 56: 57–61.

    Article  Google Scholar 

  • Hendricks, C.W., J.D. Doyle, and B. Hugley. 1995. A new solid medium for enumerating cellulose-utilizing bacteria in soil. Applied and Environmental Microbiology 61: 2016–2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano, S., and N. Nagao. 1988. An improved method for the preparation of colloidal chitin by using methane sulfonic acid. Agricultural and Biological Chemistry 52: 2111–2112.

    CAS  Google Scholar 

  • Hughes, P.R., H.A. Wood, J.P. Breen, S.F. Simpson, A.J. Duggan, and J.A. Dybas. 1997. Enhanced bioactivity of recombinant baculoviruses expressing insect specific spider toxins in lepidopteran crop pests. Journal of Invertebrate Pathology 69: 112–118.

    Article  CAS  PubMed  Google Scholar 

  • Huligol, R. V., Ramakrishna, and G. Misale. 2004. A trial with sweet sorghum. CFC and ICRISAT. 2004. In Proceedings of the Alternative “Uses of Sorghum and Pearl Millet in Asia” Expert meeting, ICRISAT, Andhra Pradesh, India, 1–4 July 2003. CFC technical paper no. 34. PO Box 74656, 1070 BR Amsterdam, The Netherlands: Common Fund for Commodities; and Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics, 333–337.

  • Khamna, S., A. Yokota, and S. Lumyoung. 2009. Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds indole-3-acetic acid and siderophore production. World Journal of Microbiology and Biotechnology 25: 649–655.

    Article  CAS  Google Scholar 

  • Kumar, C.G., P.S. Rao, S. Gupta, J. Malapaka, and A. Kamal. 2013. Enhancing the shelf life of sweet sorghum [Sorghum bicolor (L.) moench] juice through pasteurization while sustaining fermentation efficiency. Sugar Tech 15: 328–337.

    Article  Google Scholar 

  • Lynd, L.R., P.J. Weimer, Z.W.H. Van, and I.S. Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews 66: 506–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorck, H. 1948. Production of hydrocyanic acid by bacteria. Physiologiae Plantarum 1: 142–146.

    Article  CAS  Google Scholar 

  • Mishra, V., A.K. Jana, M.M. Jana, and A. Gupta. 2017. Fungal pretreatment of sweet sorghum bagasse with supplements: improvement in lignin degradation, selectivity and enzymatic saccharification. 3 Biotech 7: 110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meehnian, H., A.K. Jana, and M.M. Jana. 2016. Effect of particle size, moisture content and supplements on selective pretreatment of cotton stalks by Daedalea flavida and enzymatic saccharification. 3 Biotech 6: 235.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nath, G., and K. Singh. 2009. Utilization of vermiwash potential on certain summer vegetable crops. Journal of Central European Agriculture 10: 417–426.

    Google Scholar 

  • Negro, M.J., M.L. Solano, P. Ciria, and J. Carrasco. 1999. Composting of sweet sorghum bagasse with other wastes. Bioresource Technology 67: 89–92.

    Article  CAS  Google Scholar 

  • Novinsak, A., C. Surette, C. Allain, and M. Filion. 2008. Application of molecular technologies to monitor the microbial content of biosolids and composted biosolids. Water Science and Technology 57: 471–477.

    Article  CAS  Google Scholar 

  • Patten, C., and B.R. Glick. 2002. Role of Pseudomonas putida in indole acetic acid in development of the host plant root system. Applied and Environmental Microbiology 68: 3795–3801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perner, H., D. Schwarz, and E. George. 2006. Effect of mycorrhizal inoculation and compost supply on growth and nutrient uptake of young leek plants grown on peat-based substrates. Horticultural Science 4: 628–632.

    Google Scholar 

  • Prakasham, R.S., P. Brahmaiah, D. Nagaiah, P.S. Rao, B.V.S. Reddy, R.S. Rao, and P. Hobbs. 2012. Impact of low lignin containing brown midrib sorghum mutants to harness biohydrogen production using mixed anaerobic consortia. International Journal of Hydrogen Energy 37: 3186–3190.

    Article  CAS  Google Scholar 

  • Ratanavathi, C.V., P.K. Biswass, M. Pallavi, M. Maheswari, B.S. Vijay Kumar, and N. Seetharama. 2004. Alternative uses of sorghum-methods and feasibility: Indian perspective. CFC and ICRISAT. In: Alternative uses of sorghum and pearl millet in Asia: proceedings of the Expert Meeting, ICRISAT, Andhra Pradesh, India, 1–4 July 2003.CFC technical paper no. 34. P.O. Box 74656, 1070 BR Amsterdam, The Netherlands: Common Fund for Commodities; and Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid tropics, 188–200.

  • Rupela, O.P., B.S. Sidhu, S. Gopalakrishnan, S.K. Saini, and V. Beri. 1998. Preparation and evaluation of rice-straw compost. Paper presented at the 2nd research coordinated meeting of the FAO/IAEA coordinated research project on, “The use of nuclear techniques in the management of organic matter to enhance soil productivity and crop yields”, 20–24 April 1998, Vienna, Austria.

  • Sathya, A., R. Vijayabharathi, V. Srinivas, and S. Gopalakrishnan. 2016. Plant growth-promoting actinobacteria on chickpea seed mineral density: An upcoming complementary tool for sustainable biofortification strategy. 3 Biotech 6: 138.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sawargaonkar, G.L., S.P. Wani, M. Pavani, and Ch. R. Reddy. 2013. Sweet sorghum bagasse—A source of organic manure. In Developing a sweet sorghum ethanol value chain. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India, 155–162. ISBN 978-92-9066-555-7.

  • Schloss, P.D., A.G. Hay, D.B. Wilson, and L.P. Walker. 2003. Tracking temporal changes of bacterial community fingerprints during the initial stages of composting. FEMS Microbiology Ecology 46: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Schwyn, B., and J.B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry 160: 47–56.

    Article  CAS  PubMed  Google Scholar 

  • Shah, R.U., M. Abid, M.F. Qayyum, and R. Ullah. 2015. Dynamics of chemical changes through production of various composts/vermicompost such as farm manure and sugar industry wastes. International Journal of Recycling of Organic Waste in Agriculture 4(1): 39–51.

    Article  Google Scholar 

  • Shapira, R., A. Ordentlich, I. Chet, and A.B. Oppenheim. 1989. Control of plant diseases by chitinase expressed from cloned DNA in Escherichia coli. Phytopathology 79: 1246–1249.

    Article  CAS  Google Scholar 

  • Shapiro, M., and R. Argauer. 1997. Components of the stilbene optical brightener Tinopal LPW as enhancers of the gypsy moth (Lepidoptera: Lymantriidae) baculovirus. Journal of Economic Entomology 90: 899–904.

    Article  CAS  Google Scholar 

  • Siddiqui, Z.A. 2006. PGPR: prospective biocontrol agents of plant pathogens. In PGPR: biocontrol and biofertilization, ed. Z.A. Siddiqui, 111–142. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Slininger, P.J., R.W. Behle, M.A. Jackson, and D.A. Schisler. 2003. Discovery and development of biocontrol agents to control crop pests. Neotropical Entomology 32: 183–195.

    Article  Google Scholar 

  • Suthar, S., R. Choyal, R. Singh, and R. Sudesh. 2005. Stimulatory effect of earthworm body fluid on seed germination and seedlings growth of two legumes. Journal of Phytological Research 1: 219–222.

    Google Scholar 

  • Tokala, R.K., J.L. Strap, C.M. Jung, D.L. Crawford, M.H. Salove, L.A. Deobald, J.F. Bailey, and M.J. Morra. 2002. Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Applied and Environmental Microbiology 68: 2161–2171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trivedi, P., A. Pandey, and L.M.S. Palni. 2005. Carrier-based preparations of PGP bacterial inoculants suitable for use in cooler regions. World Journal of Microbiology and Biotechnology 21: 941–945.

    Article  Google Scholar 

  • Vidal-Valverde, C., J.F.C. Sotomayor, C.D.M. Fernandez, and G. Urbano. 1998. Nutrients and antinutritional factors in faba beans as affected by processing. Zeitschrift für Le0bensmittel-Untersuchung und–Forschung A 207: 140–145.

    Article  CAS  Google Scholar 

  • Vijayabharathi, R., B.R. Kumari, A. Satya, V. Srinivas, A. Rathore, H.C. Sharma, and S. Gopalakrishnan. 2014. Biological activity of entomopathogenic actinomycetes against lepidopteran insects (Noctuidae: Lepidoptera). Canadian Journal of Plant Science 94: 759–769.

    Article  Google Scholar 

  • Wang, C.M., C.M. Changa, M.E. Watson, W.A. Dick, Y. Chen, and H.A.J. Hoitink. 2004. Maturity indices of composted dairy and pig manures. Soil Biology and Biochemistry 36: 767–776.

    Article  CAS  Google Scholar 

  • Yandigeri, M.S., N. Malviya, M.S. Kumar, S. Pooja, and G. Sivakumar. 2015. Chitinolytic Streptomyces vinaceusdrappus S5MW2 isolated from Chilika lake, India enhances plant growth and biocontrol efficacy through chitin supplementation against Rhizoctonia solani. World Journal of Microbiology and Biotechnology 31: 1217–1225.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Z., and G.C. Brown. 1997. Auto-dissemination of a beet army worm (Lepidoptera: Noctuidae) baculovirus under laboratory conditions. Journal of Economic Entomology 90: 1187–1194.

    Article  Google Scholar 

  • Zeng, G., Z. Yu, Y. Chen, J. Zhang, H. Li, M. Yu, and M. Zhao. 2011. Response of compost maturity and microbial community composition to pentachlorophenol (PCP)-contaminated soil during composting. Bioresource Technology 102: 5905–5911.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, K., P. Penttinen, X. Zhang, Z. Ao, M. Liu, X. Yu, and Q. Chen. 2014. Maize rhizosphere in Sichuan, China, hosts plant growth-promoting Burkholderia cepacia with phosphate solubilizing and antifungal activities. Microbiological Research 169: 76–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Biotechnology, Government of India, for funding this study. This work has been undertaken as part of the CGIAR Research Program on Grain Legumes and Dry Land Cereals (GLDC). ICRISAT is a member of CGIAR Consortium. We thank Mr. PVS Prasad for his significant contribution in the laboratory and greenhouse studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramaniam Gopalakrishnan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopalakrishnan, S., Srinivas, V., Kumar, A.A. et al. Composting of Sweet Sorghum Bagasse and its Impact on Plant Growth Promotion. Sugar Tech 22, 143–156 (2020). https://doi.org/10.1007/s12355-019-00747-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-019-00747-4

Keywords

Navigation