Skip to main content
Log in

Enhancement of Wheat Cultivars (Triticum aestivum L.) by Cellulase-Treated Plant Wastes

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The production of agricultural wastes is problematic. Without proper disposal, many aspects of the environment may be affected by these wastes. This study attempted to harness rice straw and sugar cane bagasse wastes for the enhancement of Triticum aestivum cultivation through cellulase production by the fungus Aspergillus niger. The FPase and CMCase activities (representing the cellulytic activity) of A. niger were found to be enhanced until the fifth day of incubation. The maxima of the FPase and CMCase activities were 89.0 ± 2.0 and 3.3 ± 0.4 U mL−1 for the rice straw; and 91.0 ± 2.1 and 4.1 ± 0.4 U mL−1 for the sugar cane bagasse, respectively. A pot experiment was conducted to evaluate the effectiveness of cellulase-digested wastes on the growth and biochemical constituents of wheat cultivars. The plant height, fresh weight, and pigment constitution of wheat cultivars were enhanced compared to sand soil and compost fertilized soil treatments. Moreover, the total soluble carbohydrate, nitrogen and phosphorus contents of T. aestivum shoots showed promising results using these wastes. Our results show that rice straw and sugar cane bagasse can be suitable substrates for wheat cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Du Toit, P.J., Olivier, S.P., Van Biljon, P.L.: Sugar cane bagasse as a possible source of fermentable carbohydrates. I. Characterization of bagasse with regard to monosaccharide, hemicellulose, and amino acid composition. Biotechnol. Bioeng. 26, 1071–1078 (1984)

    Article  Google Scholar 

  2. Duong, T.T., Verma, S.L., Penfold, C., Marschner, P.: Nutrient release from composts into the surrounding soil. Geoderma. 195, 42–47 (2013)

    Article  Google Scholar 

  3. Gray, K.A., Zhao, L.H.: Bioethanol. Curr. Opin. Chem. Biol. 10, 141–146 (2006)

    Article  Google Scholar 

  4. Roberto, I.C., Felipe, M.G., Lacis, L.S., Silva, S.S., De Mancilha, I.M.: Utilization of sugar cane bagasse hemicellulosic hydrolyzate by Candida guilliermondii for xylitol production. Bioresour. Technol. 36, 271–275 (1991)

    Article  Google Scholar 

  5. Singh, A., Singh, N., Bishnoi, N.R.: Production of cellulases by Aspergillus heteromorphus from wheat straw under submerged fermentation. Int. J. Civ. Environ. Eng. 1, 23–26 (2009)

    Google Scholar 

  6. Kim, K.C., Yoo, S.S., Oh, Y.A., Kim, S.J.: Isolation and characteristics of Trichodermav harzianum FJI producing cellulases and xylanase. J. Microbiol. Biotechnol. 13, 1–8 (2003)

    Google Scholar 

  7. Abdelhamid, M.T., Horiuchi, T., Oba, S.: Composting of rice straw with oilseed rape cake and poultry manure and its effects on faba bean (Vicia faba L.) growth and soil properties. Bioresour. Technol. 93, 183–189 (2004)

    Article  Google Scholar 

  8. Rizk, M.: Up in smoke: Why does Egypt keep burning its farm waste? Ahramonline news. http://english.ahram.org.eg/News/114072.aspx (2014, last accessed on 18th November 2017)

  9. Elisashvili, V., Kachlishvili, E., Penninckx, M.: Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. J. Ind. Microbiol. Biotechnol. 35, 1531–1538 (2008)

    Article  Google Scholar 

  10. Gomathi, D., Muthulakshmi, C., Kumar, D.G., Ravikumar, G., Kalaiselvi, M., Uma, C.: Submerged fermentation of wheat bran by Aspergillus flavus for production and characterization of carboxy methyl cellulase. Asian Pac. J. Trop. Biomed. 2, S67–S73 (2012)

    Article  Google Scholar 

  11. Hanif, A., Yasmeen, A., Rajoka, M.I.: Induction, production, repression, and de-repression of exoglucanase synthesis in Aspergillus niger. Bioresour. Technol. 94, 311–319 (2004)

    Article  Google Scholar 

  12. Liu, D., Zhang, R., Yang, X., Wu, H., Xu, D., Tang, Z., Shen, Q.: Thermostable cellulase production of Aspergillus fumigatus Z5 under solid-state fermentation and its application in degradation of agricultural wastes. Int. Biodeterior. Biodegrad. 65, 717–725 (2011)

    Article  Google Scholar 

  13. Ojumu, T.V., Solomon, B.O., Betiku, E., Layokun, S.K., Amigun, B.: Cellulase production by Aspergillus flavus Linn isolate NSPR 101 fermented in sawdust, bagasse and corncob. Afr. J. Biotechnol. 2, 150–152 (2003)

    Article  Google Scholar 

  14. Zhuang, J., Marchant, M.A., Nokes, S.E., Strobel, H.J.: Economic analysis of cellulase production methods for bio-ethanol. Appl. Eng. Agric. 23, 679–687 (2007)

    Article  Google Scholar 

  15. Kim, M., Day, D.F.: Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. J. Ind. Microbiol. Biotechnol. 38, 803–807 (2011)

    Article  Google Scholar 

  16. Srithongkham, S., Vivitchanont, L., Krongtaew, C.: Starch/cellulose biocomposites prepared by high-shear homogenization/compression molding. J. Mater. Sci. Eng. 2, 213–222 (2012)

    Google Scholar 

  17. Manonmani, H.K., Sreekantiah, K.R.: Saccharification of sugar-cane bagasse with enzymes from Aspergillus ustus and Trichoderma viride. Enzyme. Microb. Technol. 9, 484–488 (1987)

    Article  Google Scholar 

  18. Ibrahim, M.F., Razak, M.N.A., Phang, L.Y., Hassan, M.A., Abd-Aziz, S.: Crude cellulase from oil palm empty fruit bunch by Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2 for fermentable sugars production. Appl. Biochem. Biotechnol. 170, 1320–1335 (2013)

    Article  Google Scholar 

  19. Lynd, L.R., Weimer, P.J., Van Zyl, W.H., Pretorius, I.S.: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol R. 66, 506–577 (2002)

    Article  Google Scholar 

  20. Kang, S.W., Park, Y.S., Lee, J.S., Hong, S.I., Kim, S.W.: Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour. Technol. 91, 153–156 (2004)

    Article  Google Scholar 

  21. Ghose, T.K.: Measurement of cellulase activities. Pure Appl. Chem. 59, 257–268 (1987)

    Article  Google Scholar 

  22. Chandra, M.S., Viswanath, B., Reddy, B.R.: Cellulolytic enzymes on lignocellulosic substrates in solid state fermentation by Aspergillus niger. Indian J. Microbiol. 47, 323–328 (2007)

    Article  Google Scholar 

  23. Van Peij, N.N., Gielkens, M.M., De Vries, R.P., Visser, J., De Graaff, L.H.: The transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger. Appl. Environ. Microbiol. 64, 3615–3619 (1998)

    Google Scholar 

  24. Shamala, T.R., Sreekantiah, K.R.: Production of cellulases and D-xylanase by some selected fungal isolates. Enzyme Microb. Technol. 8, 178–182 (1986)

    Article  Google Scholar 

  25. Gutierrez-Correa, M., Tengerdy, R.P.: Production of cellulase on sugar cane bagasse by fungal mixed culture solid substrate fermentation. Biotechnol. Lett. 19, 665–667 (1997)

    Article  Google Scholar 

  26. Maeda, R.N., Serpa, V.I., Rocha, V.A.L., Mesquita, R.A.A., Santa Anna, L.M.M., de Castro, A.M., Drimeier, C.E., Pereira, N. Jr., Polikarpov, I.: Enzymatic saccharification of pretreated sugars cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulase. Process Biochemy. 46, 1196–1201 (2011)

    Article  Google Scholar 

  27. Golueke, C.G.: Composting: a study of the process and its principles. p. 110. Rodale Press, Emmaus (1972)

    Google Scholar 

  28. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  29. Metzner, H., Rau, H., Sénger, H.: Untersuchungen zur synchronisierbarkiet einzelner pigmangel–mutanten von Chlorella. Planta. 65, 186–194 (1965)

    Article  Google Scholar 

  30. Ismaiel, M.M.S.: Effect of nitrogen regime on antioxidant parameters of selected prokaryotic and eukaryotic microalgal species. Acta Physiol. Plant. 38, 1–12 (2016)

    Article  Google Scholar 

  31. Payne, J.K., Stewart, J.R.: The chemical composition of the thallus wall of Characiosiphon rivularis (Characiosiphonaceae, Chlorophyta). Phycologia. 27, 43–49 (1988)

    Article  Google Scholar 

  32. Dubois, M., Gillis, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956)

    Article  Google Scholar 

  33. O’neill, J.V., Webb, R.A.: Simultaneous determination of nitrogen, phosphorus and potassium in plant material by automatic methods. J. Sci. Food Agric. 21, 217–219 (1970)

    Article  Google Scholar 

  34. Bajaj, B.K., Sharma, N., Singh, S.: Enhanced production of fibrinolytic protease from Bacillus cereus NS-2 using cotton seed cake as nitrogen source. Biocatal. Agric. Biotechnol. 2, 204–209 (2013)

    Article  Google Scholar 

  35. Wan, C., Li, Y.: Fungal pretreatment of lignocellulosic biomass. Biotechnol. Adv. 30, 1447–1457 (2012)

    Article  Google Scholar 

  36. Howell, J.A.: Enzymatic deactivation during cellulose hydrolysis. Biotechnol. Bioeng. 20, 847–863 (1978)

    Article  Google Scholar 

  37. Hatakka, A.I.: Pretreatment of wheat straw by white-rot fungi for enzymatic saccharification of cellulose. Eur. J. Appl. Microbiol. Biotechnol. 18, 350–357 (1983)

    Article  Google Scholar 

  38. Nochure, S.V., Roberts, M.F., Demain, A.I.: True cellulases production by Clostridium thermocellum grown on different carbon sources. Biotechnol. Lett. 15, 641–646 (1993)

    Article  Google Scholar 

  39. Ramesh, M.V., Lonsane, B.K.: Solid state fermentation for production of alpha–amylase by Bacillus megaterium 16M. Biotechnol. Lett. 9, 323–328 (1987)

    Article  Google Scholar 

  40. Azzaz, H.H., Murad, H.A., Kholif, A.M., Hanfy, M.A., Gawad, M.A.: Optimization of culture conditions affecting fungal cellulase production. Res. J. Microbiol. 7, 23–31 (2012)

    Article  Google Scholar 

  41. Bastian, F., Bouziri, L., Nicolardot, B., Ranjard, L.: Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biol. Biochem. 41, 262–275 (2009)

    Article  Google Scholar 

  42. Nicolardot, B., Bouziri, L., Bastian, F., Ranjard, L.: A microcosm experiment to evaluate the influence of location and quality of plant residues on residue decomposition and genetic structure of soil microbial communities. Soil Biol. Biochem. 39, 1631–1644 (2007)

    Article  Google Scholar 

  43. Koorem, K., Gazol, A., Öpik, M., Moora, M., Saks, Ü, Uibopuu, A., Sõber, V., Zobel, M.: Soil nutrient content influences the abundance of soil microbes but not plant biomass at the small-scale. PLoS ONE. 9, e91998 (2014)

    Article  Google Scholar 

  44. Basso, A.S., Miguez, F.E., Laird, D.A., Horton, R., Westgate, M.: Assessing potential of biochar for increasing water-holding capacity of sandy soils. GCB Bioenergy. 5, 132–143 (2013)

    Article  Google Scholar 

  45. Begum, F.A., Paul, N.K.: Influence of soil moisture on growth, water use and yield of mustard. J. Agron. Crop Sci. 170, 136–141 (1993)

    Article  Google Scholar 

  46. Khalilzadeh, R., Sharifi, S. R., Jalilian, J.: Antioxidant status and physiological responses of wheat (Triticum aestivum L.) to cycocel application and bio fertilizers under water limitation condition. J. Plant Interact. 11, 130–137 (2016)

    Article  Google Scholar 

  47. Oraki, H., Khanjani, F.P., Aghaalikhna, M.: Effect of water deficit stress on proline contents, soluble sugars, chlorophyll and grain yield of sunflower (Helianthus annuus L.) hybrids. Afr. J. Biotechnol. 11, 164–168 (2012)

    Google Scholar 

  48. Munné-Bosch, S.: Aging in perennials. Crit. Rev. Plant Sci. 26, 123–138 (2007)

    Article  Google Scholar 

  49. Loggini, B., Scartazza, A., Brugnoli, E., Navari-Izzo, F.: Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol. 119, 1091–1099 (1999)

    Article  Google Scholar 

  50. Ye, Y., Liang, X., Chen, Y., Li, L., Ji, Y., Zhu, C.: Carbon, nitrogen and phosphorus accumulation and partitioning, and C:N:P stoichiometry in late-season rice under different water and nitrogen managements. PLoS ONE. 9, e101776 (2014)

    Article  Google Scholar 

  51. Oscarson, P.: The strategy of the wheat plant in acclimating growth and grain production to nitrogen availability. J. Exp. Bot. 51, 1921–1929 (2000)

    Article  Google Scholar 

  52. Skowrońska, M., Filipek, T.: Accumulation of nitrogen and phosphorus by maize as the result of a reduction in the potassium fertilization rate. Ecol. Chem. Eng. S. 17, 83–88 (2010)

    Google Scholar 

  53. Haller, W.T., Sutton, D.L.: Effect of pH and high phosphorus concentrations on growth of water hyacinth. Hyacinth Cont. J. 11, 59–61 (1973)

    Google Scholar 

  54. He, M., Dijkstra, F.A., Zhang, K., Li, X., Tan, H., Gao, Y., Li, G.: Leaf nitrogen and phosphorus of temperate desert plants in response to climate and soil nutrient availability. Sci. Rep. 4, 6932 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Chris Deduke (University of Manitoba, MB, Canada) for assistance in the editing of this manuscript; Dr. Aymen El-Naggar and Mohamed Maher for technical assistance; Prof. Mounir Zaky (Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa M. S. Ismaiel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismaiel, M.M.S., Ahmed, A.ES.I. & Sobhy, S. Enhancement of Wheat Cultivars (Triticum aestivum L.) by Cellulase-Treated Plant Wastes. Waste Biomass Valor 10, 1539–1546 (2019). https://doi.org/10.1007/s12649-017-0159-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0159-8

Keywords

Navigation