Skip to main content

Advertisement

Log in

Beneficial Linkages of Endophytic Burkholderia anthina MYSP113 Towards Sugarcane Growth Promotion

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Microbial agents are the best alternative to the chemical fertilizers that promote the plant growth in an eco-friendly manner. This study was intended to characterize Burkholderia anthina strain MYSP113 and to evaluate its mechanisms linked to sugarcane growth promotion. The morphological, biochemical, and molecular characterization (gyrB and recA) results identified the bacteria as B. anthina. To determine the plant bacterial association, MYSP113 strain was tagged with a plasmid-bear green fluorescent protein (gfp) gene, and the tagged strain was inoculated to the sugarcane (variety GXB-9), and bacterial colonization analyzed by confocal laser fluorescence microscopy. The results revealed that strain MYSP113 had root-colonizing abilities, and colonization was detected at the root and leaves maturation zones. Bacteria entered the roots via cracks at the surfacing site of the roots and disrupted epidermis. Bacterial cells were observed in the substomatal chambers of leaves. Furthermore, to evaluate the mechanisms related to sugarcane growth promotion and bacterial competence in soil and plant, greenhouse experiment performed, and bacterial competence, plant growth parameters, and phytoenzymes, and hormones were assessed with or without MYSP113. We examined bacterial competence in soil and plant via qPCR and direct plant count at 45 and 90 DAI, and results recommended that strain MYSP113 has the ability to colonize in sugarcane rhizosphere and in the aerial part of the plant. Furthermore, strain MYSP113 significantly induced the plant fresh weight, dry weight, and chlorophyll content of sugarcane seedlings at 45 and 90 days after inoculation. Additionally, strain MYSP113 triggered chitinase, cellulose, indole acetic acid, and abscisic acid production in the plant roots and aerial parts, and these results signifying that bacterial inoculation modulates the plant metabolism and boost the health. The present study concluded that strain MYSP113 has beneficial linkages with the sugarcane plant, and it would be utilized as a bioinoculant in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akita, H., Z.I. Kimura, M.Z.M. Yusoff, N. Nakashima, and T. Hoshino. 2017. Identification and characterization of Burkholderia multivorans CCA53. BMC Research Notes 10: 249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen, S.E. 1974. Chemical analysis of ecological meterials, 2nd ed. London: Blackwell Scientific Publisher.

    Google Scholar 

  • Alves, G.C., A.V.M. Macedo, F.B. ReisJr, S. Urquiaga, and V.M. Reis. 2016. Plant growth promotion by four species of the genus Burkholderia. Plant and Soil 399: 373–387.

    Article  CAS  Google Scholar 

  • Angus, A.A., A. Lee, M.R. Lum, M. Shehayed, R. Hessabi, N.A. Fujishige, S. Yerrapragada, S. Kano, N. Song, P. Yang, P. Estrada de los Santos, S.M. de Faria, G. Weinstock, and A.M. Hirsch. 2013. Nodulation and effective nitrogen fixation of Macroptiliumatro purpureum (siratro) by Burkholderia tuberum, a nodulating and plant growth promoting beta-proteobacterium, are influenced by environmental factors. Plant and Soil 369: 543–562.

    Article  CAS  Google Scholar 

  • Bernabeu, P.R., M. Pistorio, G.T. Tejerizo, P. Estrada-De los Santos, M.L. Galar, J.L. Boiardi, and M.F. Lunna. 2015. Colonization and plant growth-promotion of tomato by Burkholderia tropica. Scintica Horticuture 191: 113–120.

    Article  Google Scholar 

  • Brick, J.M., R.M. Bostock, and S.E. Silverstone. 1991. Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane. Applied and Environmental Microbiology 57: 535–538.

    Google Scholar 

  • Caballero-Mellado, J., L. Martínez-Aguilar, G. Paredes-Valdez, and P. Estrada-de los Santos. 2004. Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. International Journal of Systematic and Evolutionary Microbiology 54: 1165–1172.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, T.L.G., E. Balsemão-Pires, R.M. Saraiva, P.C.G. Ferreira, and A.S. Hemerly. 2014. Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. Journal of Experimental Botany 65(19): 5631–5642.

    Article  CAS  PubMed  Google Scholar 

  • Coenye, T., and P. Vandamme. 2003. Diversity and significance of Burkholderia species occupying diverse ecological niches. Environmental Microbiology 5: 719–729.

    Article  CAS  PubMed  Google Scholar 

  • Compant, S., B. Reiter, A. Sessitsch, J. Nowak, C. Clément, and E. Barka. 2005. Endophytic colonization of Vitis vinifera L. by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN. Applied and Environmental Microbiology 71: 1685–1693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant, S., J. Nowak, T. Coenye, C. Clément, and E.A. Barka. 2008. Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiology Reviews 32: 607–626.

    Article  CAS  PubMed  Google Scholar 

  • Denancé, N., A. Sánchez-Vallet, D. Goffner, and A. Molina. 2013. Disease resistance or growth: The role of plant hormones in balancing immune responses and fitness costs. Frontier in Plant Science 4: 1–12.

    Google Scholar 

  • Devi, U., I. Khatri, R.V. Saini, L. Kumar, D. Singh, and A. Gupta. 2015. Genomic and functional characterization of a novel Burkholderia sp. strain AU4i from pea rhizosphere conferring plant growth promoting activities. Advancement in Genetic Engineering 4: 3.

    Google Scholar 

  • Döbereiner, J. 1992. History and new perspectives of diazotrophs in association with non-leguminous plants. Symbiosis 13: 1–13.

    Google Scholar 

  • Estrada-De Los Santos, P., R. Bustillos-Cristales, and J. Caballero-Mellado. 2001. Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Applied and Environmental Microbiology 67: 2790–2798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillis, M., T.V. Van, R. Bardin, M. Goor, P. Hebbar, A. Willems, P. Segers, K. Kersters, T. Heulin, and M.P. Fernandez. 1995. Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. International Journal of Bacteriology 45: 274–289.

    Article  CAS  Google Scholar 

  • Goris, J., P. De Vos, J. Caballero-Mellado, J.H. Park, E. Falsen, J.F. Quensen III, J.M. Tiedje, and P. Vandamme. 2004. Classification of the PCB- and biphenyl-degrading strain LB400 and relatives as Burkholderia xenovorans sp. nov. International Journal of Systematic and Evolutionary Microbiology 54: 1677–1681.

    Article  CAS  PubMed  Google Scholar 

  • Janssen, P.H. 2006. Identifying the dominant soil bacteria taxa in libraries of 16S rRNA and 16S rRNA genes. Applied and Environmental Microbiology 72: 1719–1728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuan, K.B., R. Othman, K.A. Rahim, and Z.H. Shamsuddin. 2016. Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS ONE. https://doi.org/10.1371/journal.pone.0152478.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, C.N., Q. Nong, M.K. Solanki, Q. Liang, J. Xie, X. Liu, Y. Li, W. Wang, L. Yang, and Y. Li. 2016. Differential expression profiles and pathways of genes in sugarcane leaf at elongation stage in response to drought stress. Scientific Reports 6: 25698. https://doi.org/10.1038/srep25698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H.B., R.K. Singh, P. Singh, Q.Q. Song, Y.X. Xing, L.T. Yang, and Y.R. Li. 2017. Genetic diversity of nitrogen-fixing and plant growth promoting Pseudomonas species isolated from sugarcane rhizosphere. Frontier in Microbiology. https://doi.org/10.3389/fmicb.2017.01268.

    Article  Google Scholar 

  • Li, Y.R., and L.T. Yang. 2015. Sugarcane agriculture and sugar industry in China. Sugar Tech 17: 1–8. https://doi.org/10.1007/s12355-014-0342-1.

    Article  Google Scholar 

  • Lovaisa, N.C., M.F.G. Molina, P.G.A.D. Quintana, and S.M. Salazar. 2015. Response of strawberry plants inoculated with Azospirillum and Burkholderia at field conditions. Revista Agronómicadel Noroeste Argentino 35(1): 33–36.

    Google Scholar 

  • Malviya, M.K., A. Pandey, A. Sharma, and S.C. Tiwari. 2013. Characterization and identification of actinomycetes isolated from ‘fired plots’ under shifting cultivation in northeast Himalaya, India. Annals of Microbiology 63: 561–569.

    Article  CAS  Google Scholar 

  • Martínez-Aguilar, L., C.S. Salazar, R. DíazMéndez, J. Caballero-Mellado, A.M. Hirsch, M.S. Vásquez-Murrieta, and P. Estrada-de los Santos. 2013. Burkholderia caballeronis sp. nov., a nitrogen fixing species isolated from tomato (Lycopersicon esculentum) with the ability to effectively nodulate Phaseolus vulgaris. Antonie van Leeuwenhoek. https://doi.org/10.1007/s10482-013-0028-9.

    Article  PubMed  Google Scholar 

  • Patil, H., and M.K. Solanki. 2016. Microbial Inoculant: Modern era of fertilizers and pesticides. Microbial inoculants in sustainable agricultural productivity. https://doi.org/10.1007/978-81-322-2647-5_19.

  • Payne, G.W., P. Vandamme, S.H. Morgan, J.J. Li Puma, T. Coenye, A.J. Weightman, T.H. Jones, and E. Mahenthiralingam. 2005. Development of a recA gene-based identification approach for the entire Burkholderia genus. Applied and Environmental Microbiology 71(7): 3917–3927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perin, L., L. Martínez-Aguilar, G. Paredes-Valdez, J.I. Baldani, P. Estrada-de los Santos, V.M. Reis, and J. Caballero-Mellado. 2006. Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugar cane and maize. International Journal of Systematic and Evolutionary Microbiology 56: 1931–1937.

    Article  CAS  PubMed  Google Scholar 

  • Pikovskaya, R.I. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology 17: 362–370.

    CAS  Google Scholar 

  • Quecine, M.C., W.L. Araújo, P.B. Rossetto, A. Ferreira, S. Tsui, P.T. Lacava, M. Mondin, J.L. Azevedo, and A.A. Pizzirani-Kleinera. 2012. Sugarcane growth promotion by the endophytic bacterium Pantoea agglomerans 33.1. Applied and Environmental Microbiology 78(21): 7511–7518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis, V.M., P. Estrada-de los Santos, S. Tenorio-Salgado, J. Vogel, M. Stoffels, S. Guyon, P. Mavingui, V.L.D. Baldani, M. Schmid, J.L. Baldani, J. Balandreau, A. Hartmann, and J. Caballero-Mellado. 2004. Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. International Journal of Systematic and Evolutionary Microbiology 54: 2155–2162.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, N., R. Brackin, K. Vinall, F. Soper, J. Holst, H. Gamage, et al. 2011. Nitrate paradigm does not hold up for sugarcane. PLoS ONE 6: e19045. https://doi.org/10.1371/journal.pone.0019045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou, N., and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425.

    CAS  PubMed  Google Scholar 

  • Sambrook, J., and D.W. Russell. 2001. Molecular cloning: A laboratory manual, 3rd ed. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Schwyn, B., and J.B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Annals of Biochemistry 160: 47–56. https://doi.org/10.1016/0003-2697(87)90612-9.

    Article  CAS  Google Scholar 

  • Sharma, S., S. Sharma, R.K. Singh, and A. Vaishampayan. 2008. Colonization behavior of bacterium Burkholderia cepacia inside the Oryza sativa roots visualized using green fluorescent protein reporter. World Journal of Microbiology & Biotechnology 24(7): 1169–1175.

    Article  Google Scholar 

  • Solanki, M.K., Z. Wang, F.Y. Wang, C.N. Li, T.J. Lan, R.K. Singh, P. Singh, L.T. Yang, and Y.R. Li. 2017. Intercropping in sugarcane cultivation influenced the soil properties and enhanced the diversity of vital diazotrophic bacteria. Sugar Tech 19: 136–147.

    Article  CAS  Google Scholar 

  • Spilker, T., A. Baldwin, A. Bumford, C.G. Dowson, E. Mahenthiralingam, and J.J. LiPuma. 2009. Expanded multilocus sequence typing for Burkholderia Species. Journal of Clinical Microbiology 47: 2607–2610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabacchioni, S., L. Ferri, G. Manno, M. Mentasti, P. Cocchi, S. Campana, N. Ravenni, G. Taccetti, C. Dalmastri, L. Chiarini, A. Bevivinoand, and R. Fani. 2008. Use of the gyrB gene to discriminate among species of the Burkholderia cepacia complex. FEMS Microbiology Letter 281: 175–182.

    Article  CAS  Google Scholar 

  • Thanh, D.T.N., and C.N. Diep. 2014. Isolation, characterization and identification of endophytic bacteria in maize (Zea mays L.) cultivated on Acrisols of the Southeast of Vietnam. American Journal of Life Sciences 2(4): 224–233.

    Article  CAS  Google Scholar 

  • Touceda-González, M., G. Brader, L. Antonielli, V.B. Ravindran, G. Waldner, W.F. Hanl, E. Corretto, A. Campisano, M. Pancher, and A. Sessitsch. 2015. Combined amendment of immobilizers and the plant growth-promoting strain Burkholderia phytofirmans PsJN favours plant growth and reduces heavy metal uptake. Soil Biology & Biochemistry 91: 140–150.

    Article  CAS  Google Scholar 

  • Vandamme, P., D. Henry, T. Coenye, S. Nzula, M. Vancanneyt, J.J. LiPuma, D.P. Speert, J.R.W. Govan, and E. Mahenthiralingam. 2006. Burkholderia anthina sp. nov. and Burkholderia pyrrocinia, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. FEMS Immunology and Medical Microbiology 33: 143–149.

    Article  Google Scholar 

  • Wei, C.Y., L. Lin, L.J. Luo, Y.X. Xing, C.J. Hu, L.T. Yang, Y.R. Li, and Q. An. 2014. Endophytic nitrogen-fixing Klebsiella variicola strain DX120E promotes sugarcane growth. Biology and Fertility of Soils 50: 657–666.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

National Natural Science Foundation of China, China Postdoctoral Foundation, Guangxi Innovation Term of Modern Agriculture Technology, and Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences.

Funding

This research was supported jointly by National Natural Science Foundation of China (31471449), Guangxi Funds for Bagui Scholars and Distinguished Experts (TF2013-03), Natural Science Foundation of Guangxi Province (2014GXNSFBA118085, 2016GXNSFAA380126), Project funded by China Postdoctoral Foundation, Guangxi Innovation Term of Modern Agriculture Technology (gjnytxgxcxtd-03-01), Guangxi R&D Program (GKN14121008-2-1, GKG1598006-1-1, GuiKeAD17195100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Rui Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malviya, M.K., Solanki, M.K., Li, CN. et al. Beneficial Linkages of Endophytic Burkholderia anthina MYSP113 Towards Sugarcane Growth Promotion. Sugar Tech 21, 737–748 (2019). https://doi.org/10.1007/s12355-019-00703-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-019-00703-2

Keywords

Navigation