Skip to main content
Log in

Genetic Diversity Analysis of Sugarcane Germplasm Based on Fluorescence-Labeled Simple Sequence Repeat Markers and a Capillary Electrophoresis-based Genotyping Platform

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Genetic diversity analysis, which refers to the elaboration of total extent of genetic characteristics in the genetic makeup of a certain species, constitutes a classical strategy for the study of diversity, population genetic structure, and breeding practices. In this study, fluorescence-labeled seven gSSR and eight EST-SSR primer pairs and a capillary electrophoresis genotyping platform were used to assess the genetic diversity among 181 sugarcane clones. The clones were sorted into 14 series based on their origin. A total of 205 polymorphic SSR alleles were identified. The mean polymorphic information content (PIC) value was 0.94 for gSSRs and 0.93 for EST-SSRs, respectively. Gene differentiation coefficient (Gst) of inter-series variation (13.71 %) was much lower than intra-series variation (86.29 %). Gene flow value (Nm = 3.15) suggested that there was no significant genetic differentiation or population structure variations among the 14 series. The 181 clones could be clustered into seven groups based on neighbor-joining cluster analysis. Three major groups, namely the USA Group, the Guangxi-Hainan-Fujian Group, and the Guangdong Group, consisted of 36, 64, and 39 clones, respectively. The genotyping data provide valuable information for selecting cross parents, designing cross combinations, and future hybrid breeding strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aitken, K., P. Jackson, and C. McIntyre. 2005. A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theoretical and Applied Genetics 110: 789–801.

    Article  CAS  PubMed  Google Scholar 

  • Aitken, K.S., J.C. Li, P. Jackson, G. Piperidis, and C.L. McIntyre. 2006. AFLP analysis of genetic diversity within Saccharum officinarum and comparison with sugarcane cultivars. Australian Journal of Agricultural Research 57: 1167–1184.

    Article  CAS  Google Scholar 

  • Alves de Almeida, C.M., S.E. Nascimento de Lima, G.S. de Andrade Lima, J.Z. de Brito, V.M. Tenorio Sabino Donato, and M.V. da Silva. 2009. Molecular characterization of the sugarcane cultivars obtained by ISSR markers. Ciencia e Agrotecnologia 33: 1771–1776.

    Article  Google Scholar 

  • Alwala, S., C.A. Kimbeng, J.C. Veremis, and K.A. Gravois. 2008. Linkage mapping and genome analysis in a Saccharum interspecific cross using AFLP, SRAP and TRAP markers. Euphytica 164: 37–51.

    Article  CAS  Google Scholar 

  • Andru, S., Y.B. Pan, S. Thongthawee, D.M. Burner, and C.A. Kimbeng. 2011. Genetic analysis of the sugarcane (Saccharum spp.) cultivar “LCP 85-384”. I. Linkage mapping using AFLP, SSR, and TRAP markers. Theoretical and Applied Genetics 123: 77–93.

    Article  PubMed  Google Scholar 

  • Arruda, P. 2012. Genetically modified sugarcane for bioenergy generation. Current Opinion in Biotechnology 23: 315–322.

    Article  CAS  PubMed  Google Scholar 

  • Ayana, A., T. Bryngelsson, and E. Bekele. 2001. Geographic and altitudinal allozyme variation in sorghum (Sorghum bicolor (L.) Moench) landraces from Ethiopia and Eritrea. Hereditas 135: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Barati, M., and A. Arzani. 2012. Genetic diversity revealed by EST-SSR markers in cultivated and wild safflower. Biochemical Systematics and Ecology 44: 117–123.

    Article  CAS  Google Scholar 

  • Besse, P., G. Taylor, B. Carroll, N. Berding, D. Burner, and C.L. McIntyre. 1998. Assessing genetic diversity in a sugarcane germplasm collection using an automated AFLP analysis. Genetica 104: 143–153.

    Article  CAS  PubMed  Google Scholar 

  • Cai, Q., K.S. Aitken, Y.H. Fan, G. Piperidis, P. Jackson, and C.L. McIntyre. 2005. A preliminary assessment of the genetic relationship between Erianthus rockii and the “Saccharum complex” using microsatellite (SSR) and AFLP markers. Plant Science 169: 976–984.

    Article  CAS  Google Scholar 

  • Carvalho, A., H. Guedes-Pinto, and J. Lima-Brito. 2009. Genetic diversity among old Portuguese bread wheat cultivars and botanical varieties evaluated by ITS rDNA PCR-RFLP markers. Journal of Genetics 88: 363–367.

    Article  CAS  PubMed  Google Scholar 

  • Chandra, A., M.P. Grisham, Y.B. Pan, and C. McIntyre. 2014. Allelic divergence and cultivar-specific SSR alleles revealed by capillary electrophoresis using fluorescence-labeled SSR markers in sugarcane. Genome 57: 363–372.

    Article  CAS  PubMed  Google Scholar 

  • Chang, D., F.Y. Yang, J.J. Yan, Y.Q. Wu, S.Q. Bai, X.Z. Liang, Y.W. Zhang, and Y.M. Gan. 2012. SRAP analysis of genetic diversity of nine native populations of wild sugarcane, Saccharum spontaneum, from Sichuan, China. Genetics and Molecular Research 11: 1245–1253.

    Article  CAS  PubMed  Google Scholar 

  • Chen, R.K., L.P. Xu, and Y.Q. Lin. 2011. Modern sugarcane genetic breeding, 400. Beijing: China Agricuture Press.

    Google Scholar 

  • Cordeiro, G.M., T.L. Maguire, K.J. Edwards, and R.J. Henry. 1999. Optimisation of a microsatellite enrichment technique in Saccharum spp. Plant Molecular Biology Reporter 17: 225–229.

    Article  CAS  Google Scholar 

  • Cordeiro, G.M., R. Casu, C.L. McIntyre, J.M. Manners, and R.J. Henry. 2001. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Science 160: 1115–1123.

    Article  CAS  PubMed  Google Scholar 

  • Cordeiro, G.M., Y.B. Pan, and R.J. Henry. 2003. Sugarcane microsatellites for the assessment of genetic diversity in sugarcane germplasm. Plant Science 165: 181–189.

    Article  CAS  Google Scholar 

  • Creste, S., D.M. Sansoli, A.C.S. Tardiani, D.N. Silva, F.K. Goncalves, T.M. Favero, C.N.F. Medeiros, C.S. Festucci, L.A. Carlini-Garcia, M.G.A. Landell, and L.R. Pinto. 2010. Comparison of AFLP, TRAP and SSRs in the estimation of genetic relationships in sugarcane. Sugar Tech 12: 150–154.

    Article  CAS  Google Scholar 

  • Da Silva, C.M., C.A. Mangolin, A.S. Mott, and M.F.P.S. Machado. 2008. Genetic diversity associated with in vitro and conventional bud propagation of Saccharum varieties using RAPD analysis. Plant Breeding 127: 160–165.

    Article  Google Scholar 

  • Devarumath, R.M., S.B. Kalwade, P.G. Kawar, and K.V. Sushir. 2012. Assessment of genetic diversity in sugarcane germplasm using ISSR and SSR markers. Sugar Tech 14: 334–344.

    Article  CAS  Google Scholar 

  • Graham, J., K. Smith, K. MacKenzie, L. Jorgenson, C. Hackett, and W. Powell. 2004. The construction of a genetic linkage map of red raspberry (Rubus idaeus subsp idaeus) based on AFLPs, genomic-SSR and EST-SSR markers. Theoretical and Applied Genetics 109: 740–749.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, P.K., and S. Rustgi. 2004. Molecular markers from the transcribed/expressed region of the genome in higher plants. Functional and Integrative Genomics 4: 139–162.

    Article  CAS  PubMed  Google Scholar 

  • Hamrick, J.L., and M. Godt. 1990. Plant population genetics, breeding, and genetic resources. In Allozyme diversity in plant species, ed. A.H.D. Brown, M.T. Clegg, A.L. Kahler, and B.S. Weir, 43–63. Sunderland: Sinauer Associates Inc.

    Google Scholar 

  • Hofsetz, K., and M.A. Silva. 2012. Brazilian sugarcane bagasse: Energy and non-energy consumption. Biomass and Bioenergy 46: 564–573.

    Article  Google Scholar 

  • Huang, X.D. 2009. DNA profiling and genetic diversity of sugarcane germplasms by SSR loci [Thesis], 18. Fuzhou: Fujian Agriculture and Forestry University.

    Google Scholar 

  • Jackson, P.A. 2005. Breeding for improved sugar content in sugarcane. Field Crops Research 92: 277–290.

    Article  Google Scholar 

  • Kalia, R.K., M.K. Rai, S. Kalia, R. Singh, and A.K. Dhawan. 2011. Microsatellite markers: an overview of the recent progress in plants. Euphytica 177: 309–334.

    Article  CAS  Google Scholar 

  • Kumar, A., and S. Rogstad. 1998. A hierarchical analysis of mini satellite DNA diversity in Gambel oak (Quercus gambelii Nutt.; Fagaceae). Molecular Ecology 7: 859–869.

    Article  CAS  Google Scholar 

  • Le Clerc, V., F. Bazante, C. Baril, J. Guiard, and D. Zhang. 2005. Assessing temporal changes in genetic diversity of maize varieties using microsatellite markers. Theoretical and Applied Genetics 110: 294–302.

    Article  PubMed  Google Scholar 

  • Liu, P.W., Y.X. Que, and Y.B. Pan. 2011. Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing. Sugar Tech 13: 129–136.

    Article  Google Scholar 

  • Macedo, I.C., J.E. Seabra, and J.E. Silva. 2008. Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020. Biomass and Bioenergy 32: 582–595.

    Article  CAS  Google Scholar 

  • Nawaz, S., F.A. Khan, S. Tabasum, M. Zakria, A. Saeed, and M.Z. Iqbal. 2010. Phylogenetic relationships among Saccharum clones in Pakistan revealed by RAPD markers. Genetics and Molecular Research 9: 1673–1682.

    Article  CAS  PubMed  Google Scholar 

  • Nayak, S.N., J. Song, A. Villa, B. Pathak, T. Ayala-Silva, X. Yang, J. Todd, N.C. Glynn, D.N. Kuhn, B. Glaz, R.A. Gilbert, J.C. Comstock, and J. Wang. 2014. Promoting utilization of saccharum spp. genetic resources through genetic diversity analysis and core collection construction. PLoS One 9: e110856.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ometto, A.R., M.Z. Hauschild, and W.N.L. Roma. 2009. Lifecycle assessment of fuel ethanol from sugarcane in Brazil. International Journal of Life Cycle Assessment 14: 236–247.

    Article  CAS  Google Scholar 

  • Pan, Y.B. 2006. Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing. Sugar Tech 8: 246–256.

    Article  CAS  Google Scholar 

  • Pan, Y.B. 2010. Databasing molecular identities of sugarcane (Saccharum spp.) clones constructed with microsatellite (SSR) DNA markers. American Journal of Plant Sciences 1: 87–94.

    Article  CAS  Google Scholar 

  • Pan, Y.B., G. Cordeiro, E. Richards, and R. Henry. 2003. Molecular genotyping of sugarcane clones with microsatellite DNA markers. Maydica 48: 319–329.

    Google Scholar 

  • Pan, Y.B., B.S. Scheffler, and E. Richard Jr. 2007. High throughput genotyping of commercial sugarcane clones with microsatellite (SSR) DNA markers. Sugar Tech 9: 176–181.

    Google Scholar 

  • Paterson, A.H., C.L. Brubaker, and J.F. Wendel. 1993. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Molecular Biology Reporter 11: 122–127.

    Article  CAS  Google Scholar 

  • Que, Y.X., Y.B. Pan, Y.H. Lu, C. Yang, Y.T. Yang, N. Huang, and L.P. Xu. 2014. Genetic analysis of diversity within a Chinese local sugarcane germplasm based on start codon targeted polymorphism. BioMed Research International 2014: 1–10.

    Article  Google Scholar 

  • Ramakrishnan, M., S.A. Ceasar, V. Duraipandiyan, N. Al-Dhabi, and S. Ignacimuthu. 2015. Using molecular markers to assess the genetic diversity and population structure of finger millet (Eleusine coracana (L.) Gaertn.) from various geographical regions. Genetic Resources and Crop Evolution, 1–16.

  • Ramu, P., C. Billot, J.F. Rami, S. Senthilvel, H.D. Upadhyaya, L.A. Reddy, and C.T. Hash. 2013. Assessment of genetic diversity in the sorghum reference set using EST-SSR markers. Theoretical and Applied Genetics 126: 2051–2064.

    Article  CAS  PubMed  Google Scholar 

  • Rowe, G., T. Beebee, and T. Burke. 1998. Phylogeography of the natterjack toad Bufo calamita in Britain: Genetic differentiation of native and translocated populations. Molecular Ecology 7: 751–760.

    Article  Google Scholar 

  • Senior, M., J. Murphy, M. Goodman, and C. Stuber. 1998. Utility of SSRs for determining genetic similarities an relationships in maize using an agarose gel system. Crop Science 38: 1088–1098.

    Article  Google Scholar 

  • Silva, D.C., M.C. Paz de Souza, L.S. Costa Duarte Filho, J.M. dos Santos, G.V. de Souza Barbosa, and C. Almeida. 2012. New polymorphic EST-SSR markers in sugarcane. Sugar Tech 14: 357–363.

    Article  CAS  Google Scholar 

  • Singh, R.K., S.K. Mishra, S.P. Singh, N. Mishra, and M.L. Sharma. 2010. Evaluation of microsatellite markers for genetic diversity analysis among sugarcane species and commercial hybrids. Australian Journal of Crop Science 4: 116–125.

    Google Scholar 

  • Singh, R.K., S.N. Jena, S. Khan, S. Yadav, N. Banarjee, S. Raghuvanshi, B. Vasudha, S.K. Dattamajumder, R. Kapur, S. Solomon, M. Swapna, S. Srivastava, and A.K. Tyagi. 2013. Development, cross-species/genera transferability of novel EST-SSR markers and their utility in revealing population structure and genetic diversity in sugarcane. Gene 524: 309–329.

    Article  CAS  PubMed  Google Scholar 

  • Slatkin, M. 1981. Estimating levels of gene flow in natural populations. Genetics 99: 323–335.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, J., E. Chin, H. Shu, O. Smith, S. Wall, M. Senior, S.E. Mitchell, S. Kresovich, and J. Ziegle. 1997. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theoretical and Applied Genetics 95: 163–173.

    Article  CAS  Google Scholar 

  • Wen, M.F., H.Y. Wang, Z.Q. Xia, M.L. Zou, C. Lu, and W.Q. Wang. 2010. Developmenrt of EST-SSR and genomic-SSR markers to assess genetic diversity in Jatropha curcas L. BMC Research Notes 3: 42–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiang, K., K.C. Yang, G.T. Pan, L.M. Reid, W.T. Li, X. Zhu, and Z.M. Zhang. 2010. Genetic diversity and classification of maize landraces from China’s sichuan basin based on agronomic traits, quality traits, combining ability and SSR markers. Maydica 55: 85–93.

    Google Scholar 

  • Xu, M.L., A.E. Melchinger, X.C. Xia, and T. Lubberstedt. 1999. High-resolution mapping of loci conferring resistance to sugarcane mosaic virus in maize using RFLP, SSR, and AFLP markers. Molecular and General Genetics 261: 574–581.

    Article  CAS  PubMed  Google Scholar 

  • Yan, X.B. 2011. Development and characterization of EST-SSRs nmarkers in sugarcane [Thesis]. Fuzhou: Fujian, Fujian Agriculture and Forestry University. pp. 30–31.

  • Yang, C., X. Yang, Q. Fu, K. Xu, and B.R. Lu. 2012. Limited divergence among populations of rice striped stem borer in southeast China caused by gene flow: Implications for resistance management. Journal of Systematics and Evolution 50: 443–453.

    Article  Google Scholar 

  • Ye, L.F., L. Rui, H.H. Yi, D.H. Hua, C.Z. Hua, C.J. Wen, C. Fu, C.M. Zhang, and Y.H. Yang. 2008. AFLP analysis of genetic diversity in series sugarcane parents developed at HSBS. Molecular Plant Breeding 6: 517–522.

    Google Scholar 

  • You, Q., L.P. Xu, Y.F. Zheng, and Y.X. Que. 2013. Genetic diversity analysis of sugarcane parents in Chinese breeding programmes using gSSR markers. The Scientific World Journal, 1–11.

  • Zawedde, B.M., M. Ghislain, E. Magembe, G.B. Amaro, R. Grumet, and J. Hancock. 2014. Characterization of the genetic diversity of Uganda’s sweet potato (Ipomoea batatas) germplasm using microsatellites markers. Genetic Resources and Crop Evolution 62: 501–513.

    Article  Google Scholar 

  • Zhang, P., S. Dreisigacker, A. Buerkert, S. Alkhanjari, A.E. Melchinger, and M.L. Warburton. 2006. Genetic diversity and relationships of wheat landraces from Oman investigated with SSR markers. Genetic Resources and Crop Evolution 53: 1351–1360.

    Article  Google Scholar 

  • Zheng, Y.F. 2009. SSR analysis of sugarcane parents and construction of DNA fingerprinting [Thesis]. Fuzhou: Fujian, Fujian Agriculture and Forestry University. pp. 12.

Download references

Acknowledgments

This work was supported by the earmarked fund for the Modern Agriculture Technology of China (CARS-20) and the 948 Program on the Introduction of International Advanced Agricultural Science and Technique of Department of Agriculture (2014-S18). The authors especially thank Andrew C. Allan in The New Zealand Institute for Plant & Food Research Ltd. (Plant and Food Research), Mt Albert Research Centre, Auckland, New Zealand, for his valuable comments and support during paper preparation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Ping Xu or You-Xiong Que.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 97 kb)

Supplementary material 2 (PDF 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, Q., Pan, YB., Xu, LP. et al. Genetic Diversity Analysis of Sugarcane Germplasm Based on Fluorescence-Labeled Simple Sequence Repeat Markers and a Capillary Electrophoresis-based Genotyping Platform. Sugar Tech 18, 380–390 (2016). https://doi.org/10.1007/s12355-015-0395-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-015-0395-9

Keywords

Navigation