Skip to main content
Log in

Sequence Characteristics and Phylogenetic Implications of the nrDNA Internal Transcribed Spacers (ITS) in Protospecies and Landraces of Sugarcane (Saccharum officinarum L.)

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Internal transcribed spacers (ITS) of nuclear ribosomal DNA (nrDNA) cistrons were studied in 19 protospecies and 11 landraces of Saccharum spp. The purpose of the present study was to investigate genetic variability and genetic divergence among the 30 genotypes of Saccharum officinarum L. for exploitation of potential parent resources in sugarcane breeding. ITS region analysis revealed the length of the ITS sequences from 589 to 590 bp, G+C content from 64.01 to 65.03 % (ITS1: 207 bp, G+C: 62.8–65.22 %; ITS2: 218–219 bp, G+C: 69.27–70.78 %; and 5.8S: 164 bp, G+C: 57.32–57.93 %). The ITS1 and ITS2 regions showed variable sequence lengths and G+C content. The 5.8S region was found to be more conserved (99.39 %). ITS1 recorded highest percentage of variation sites (90.48 %), high number of transitions and transversions. The neighbor-joining (NJ) method was used to assess the phylogenetic relationship based on the combined nucleotide sequence data of ITS1, 5.8S and ITS2, and the 30 accessions were divided into two clades. Clade I included all the 11 S. spontaneum accessions, and clade II consisted of S. officinarum, S. barberi, S. sinense, S. robustum and endemic species. Eleven accessions of S. spontaneum were clustered into several subclasses, indicating that the genetic diversity of S. spontaneum genotypes is abundant. Six landraces namely Hongpi S17, Tuojianghong, Loethers, Guzhizhe, Mango, Guilin Zhuzhe in the present study were closely related to S. spontaneum species, which may be used as available resources. This study validates the utility of rDNA-ITS region as a reliable indicator of phylogenetic relationships, especially ITS1 as probable DNA barcode at higher levels and can serve as an additional approach for studying genetic diversity in sugarcane and related relatives. The analysis on ITS sequences could provide a reference for exploitation of potential parent resources in sugarcane breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alonso-Pippo, W., C.A. Lueng, L.A.M. Alberteris, G.G. Pino, and S. Duvoisin Jr. 2013. Practical implementation of liquid biofuels: The transferability of the Brazilian experiences. Energy Policy 60: 70–80.

    Article  CAS  Google Scholar 

  • Baldwin, B.G., M.J. Sanderson, J.M. Porter, M.F. Wojciechowski, C.S. Campbell, and M.J. Bobola. 1995. The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden 82: 247–277.

    Article  Google Scholar 

  • Brown, J.S., R.J. Schnell, E.J. Power, S.L. Douglas, and D.N. Kuhn. 2007. Analysis of clonal germplasm from five Saccharum species: S. barberi, S. robustum, S. officinarum, S. sinense and S. spontaneum. A study of inter- and intra species relationships using microsatellite markers. Genetic Resources and Crop Evolution 54: 627–648.

    Article  CAS  Google Scholar 

  • Chang, D., F.Y. Yang, J.J. Yan, Y.Q. Wu, S.Q. Bai, X.Z. Liang, Y.W. Zhang, and Y.M. Gan. 2012. SRAP analysis of genetic diversity of nine native populations of wild sugarcane, Saccharum spontaneum, from Sichuan, China. Genetics and Molecular Research 11(2): 1245–1253.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., Y.H. Fan, Y.J.G. Xiang, Q. Cai, and Y.P. Zhang. 2003. Phylogenetic relationships of Saccharum and related species inferred from sequence analysis of the nrDNA ITS region. Acta Agronomica Sinica 29(3): 379–385.

    Google Scholar 

  • Chen, Y., Y.H. Gao, W.Y. Liao, and Z.K. Tong. 2009. Analysis on rDNA-ITS sequence and research of intra-specific phylogeny of Lycoris albiflora. Journal of Plant Resources and Environment 18(3): 25–31.

    CAS  Google Scholar 

  • Christopher, H.J., J.S. Kenneth, and E.B.J. Harvey. 2009. Evolutionary relationships, interisland biogeography, and molecular evolution in the Hawaiian violets (Viola: Violaceae). American Journal of Botany 96: 2087–2099.

    Article  Google Scholar 

  • D’Hont, A. 2005. Unraveling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenetics and Genome Research 109: 27–33.

    Article  PubMed  Google Scholar 

  • D’Hont, A., F. Paulet, and J. Glaszmann. 2002. Oligoclonal interspecific origin of ‘North Indian’ and ‘Chinese’ sugarcanes. Chromosome Research 10(3): 253–262.

    Article  PubMed  Google Scholar 

  • Dkhar, J., S. Kumaria, S.R. Rao, and P. Tandon. 2012. Sequence characteristics and phylogenetic implications of the nrDNA internal transcribed spacers (ITS) in the genus Nymphaea with focus on some Indian representatives. Plant Systematics and Evolution 298: 93–108.

    Article  Google Scholar 

  • Huang, D.L., X.L. Qing, Q. Liao, Y.J. Gao, and F.X. Fang. 2010. Simple and rapid procedure for isolation of high quality genomic DNA from sugarcane. Biotechnology Bulletin 5: 101–106.

    Google Scholar 

  • Harvey, M., and F.C. Botha. 1996. Use of PCR-based methodologies for the determination of DNA diversity between Saccharum varieties. Euphytica 89: 257–265.

    Article  CAS  Google Scholar 

  • Irvine, J.E. 1999. Saccharum species as horticultural classes. Theoretical and Applied Genetics 98: 186–194.

    Article  Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120.

  • Li, Y.R. 2010. Modern sugarcane science, 1–125. Beijing: China agriculture press.

    Google Scholar 

  • Lavanya, D.L., and G. Hemaprabha. 2010. Analysis of genetic diversity among high sucrose genotypes of sugarcane (Saccharum spp.) derived from CoC 671 using sugarcane specific microsatellite markers. Electronic Journal of Plant Breeding 1(4): 399–406.

    Google Scholar 

  • Liu, X.L., H.S. Su, L. Ma, X. Lu, X.M. Ying, Q. Cai, and Y.H. Fan. 2010. Phylogenetic relationships of sugarcane related genera and species based on ITS sequences of nuclear ribosomal DNA. Acta Agronomica Sinica 36(11): 1853–1863.

    CAS  Google Scholar 

  • Prabu, G., P.G. Kawar, M.C. Pagariya, and D.T. Prasad. 2011. Identification of water deficit stress upregulated genes in sugarcane. Plant Molecular Biology Reporter 29: 291–304.

    Article  Google Scholar 

  • Pan, Y.B., D.M. Burner, B.L. Legendre, M.P. Grisham, and W.H. White. 2004. An assessment of the genetic diversity within a collection of Saccharum spontaneum L. with RAPD-PCR. Genetic Resources and Crop Evolution 51: 895–903.

    Article  CAS  Google Scholar 

  • Qi, Y.W., F.Y. Lao, C.M. Zhang, L.N. Fan, H.Y. He, S.M. Liu, Q.W. Li, and H.H. Deng. 2011. Comparative analysis of genetic diversity of Chinese and American sugarcane (Saccharum spp.) using SSR markers. Chinese Journal of Tropical Crops 32(1): 99–104.

    Google Scholar 

  • Quan, M.H., L.J. Ou, C.W. She, X.J. Wu, and D.M. Chen. 2012. rDNA internal transcribed spacer sequence analysis of Lycoris Hert. African Journal of Biotechnology 11: 7361–7365.

    CAS  Google Scholar 

  • Rodriguez-Trelles, F., R. Tarrio, and F.J. Ayala. 2000. Evidence for a high ancestral GC content in Drosophila. Molecular Biology and Evolution 17: 1710–1717.

    Article  CAS  PubMed  Google Scholar 

  • Silva, M.D.A., J.L. Jifon, J.A.G. Dasilva, C.M.D. Santos, and V. Sharma. 2012. Relationships between physiological traits and productivity of sugarcane in response to water deficit. Journal of Agricultural Science 4: 1–15.

    Google Scholar 

  • Sultana, S., Y.P. Lim, J.W. Bang, and H.W. Choi. 2011. Internal transcribed spacer (ITS) and genetic variations in Lilium native to Korea. Horticulture, Environment, and Biotechnology 52(5): 502–510.

    Article  CAS  Google Scholar 

  • Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876–4882.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28(10): 2731–2739.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vijaykumar, A., A. Saini, and N. Jawali. 2010. Phylogenetic analysis of subgenus Vigna species using nuclear ribosomal RNA ITS: Evidence of hybridization among Vigna unguiculata subspecies. Journal of Heredity 101: 177–188.

    Article  CAS  PubMed  Google Scholar 

  • Yan, J., J. Deng, C.J. Zhou, B.Y. Zhong, and F. Hao. 2010. Phenotypic and molecular characterization of Madurella pseudomycetomatis sp. nov. a novel opportunistic fungus possibly causing black-grain mycetoma. Journal of Clinical Microbiology 48: 251–257.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zeng, H.Z., C.M. Zheng, W. Zhu, and H.Q. Gao. 2003. RAPD analysis on the relationship and parental specific markers among sugarcane germplasm. Journal of Plant Genetic Resources 4(2): 99–103.

    Google Scholar 

  • Zhuang, N.S., C.M. Zheng, D.Y. Huang, Y.Q. Tang, and H.Q. Gao. 2005. AFLP analysis for sugarcane germplasms. Acta Agronomica Sinica 31: 444–450.

    CAS  Google Scholar 

  • Zhang, Z.X., S.Z. Lin, and X. Xue. 2007. Phylogenetical relationship of five Ericaulon species based on the ITS sequences. Journal of Beijing Forestry University 29(5): 1–6.

    Google Scholar 

Download references

Acknowledgments

The present study was supported by the grants from the National High Technology Research and Development Program (“863” Program) of China (2013AA102604), National Natural Science Foundation of China (31360293), International Scientific Cooperation Program of China (2013DFA31600), and Guangxi Special Funds for Bagui Scholars’s and Distinguished Experts, Guangxi Natural Science Foundation (2011GXNSFF018002, 2012GXNSFDA053011, 2013NXNSFAA019073), and Guangxi R & D Program projects (GKH 1347004-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Tao Yang or Yang-Rui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, CF., Yang, LT., Li, YR. et al. Sequence Characteristics and Phylogenetic Implications of the nrDNA Internal Transcribed Spacers (ITS) in Protospecies and Landraces of Sugarcane (Saccharum officinarum L.). Sugar Tech 18, 8–15 (2016). https://doi.org/10.1007/s12355-014-0355-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-014-0355-9

Keywords

Navigation