Skip to main content
Log in

Molecular responses to the fungal pathogen Gibberella fujikuroi in the leaves of chewing cane (Saccharum officinarum L.)

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Molecular responses induced by the fungal pathogen Gibberella fujikuroi in the leaves of chewing cane were investigated using proteomics, physiological and biochemical approaches, and real-time fluorescent quantitative polymerase chain reaction (qRT-PCR). Proteins were extracted from the leaves of the chewing cane cultivar Fuan at 0 and 48 h after inoculation. Twenty-four proteins that showed up-/ down-regulated expression were identified using mass fingerprinting/mass spectrometry and assigned putative functions. While 10 proteins were related to disease resistance, others were found to be involved in different metabolic pathways. The results of enzyme assays and qRT-PCR further validated the expression patterns of chitinase, putative peroxidase, and superoxide dismutase 3 in the proteomics study, which suggested that these enzymes and the other identified proteins were activated by G. fujikuroi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen RL, Bittner-Eddy P, Grenville-Briggs L, Meitz J, Rehmany AP, Rose LE, Beynon JL (2004). Host-parasite co-evolutionary conflict between Arabidopsis and downy mildew. Science, 306:1957–1960.

    Article  PubMed  CAS  Google Scholar 

  • Anna Maria Timperio, Maria Giulia Egidi, Lello Zolla (2008). Proteomics applied on plant abiotic stresses: Role of heat shock proteins (HSP) Proteomics J. 71: 391–411.

    Article  CAS  Google Scholar 

  • Bittner-Eddy PD, Crute LR, Holub EB, Beynon JL (2000). RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. Plant J 21:177–188.

    Article  PubMed  CAS  Google Scholar 

  • Bob B. Buchanan, Wilhelm Gruissem, Russell L. Jones. Biochemistry and molecular biology of plants, 1st ed. ASPB Press, America.

  • Botella M A, Parker J E, Frost LN, Bittner-Eddy PD, Beynon JL, Daniels MJ, Holub EB, Jones JDG (1998). Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. Plant Cell 10:1847–1860.

    Article  PubMed  CAS  Google Scholar 

  • Bradford M M (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Ana1. Bioehem. 72: 248–254.

    Article  CAS  Google Scholar 

  • Campo S, Carrascal M, Coca M, Abian J, San Segundo B (2004). The defence response of germinating maize embryos against fungal infection: a proteomics approach. Proteomics 4:383–396.

    Article  PubMed  CAS  Google Scholar 

  • Century, K.S., Holub, E.B., and Staskawicz, B.J. (1995). NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen. Proc. Natl. Acad. Sci. USA 92, 6597–6601.

    Article  PubMed  CAS  Google Scholar 

  • Chance B, Maehly A C (1955). Assay of catalase and peroxidase. Meth. Enzymol. 2: 764–775.

    Article  Google Scholar 

  • Fang, C-X., Jun Xiong, Long Qiu, Hai-Bin Wang, Bi-Qing Song, Hai-Bin He, Rui-Yu Lin, Wen-Xiong Lin (2009). Analysis of gene expressions associated with increased allelopathy in rice (Oryza sativa L.) induced by exogenous salicylic acid. Plant Growth Regul 57:163–172.

    Article  CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004). Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236.

    Article  PubMed  CAS  Google Scholar 

  • Collinge D B, Kragh K M, Mikkelsen J D, et al (1993). Plant chitinases. Plant J., 1993, 3(1): 31–40.

    Article  PubMed  CAS  Google Scholar 

  • Corbin DR, Sauer N, Lamb CJ (1987). Differential regulation of a hydroxyproline-rich glycoprotein gene family in wounded and infected plants. Mol Cell Biol 7:4337–4344.

    PubMed  CAS  Google Scholar 

  • Custers JHHV, Harrison SJ, Sela-Buurlage MB, Van Deventer E, Lageweg W, Howe PW, van der Meijs PJ, Ponstein AS, Simons BH, Melchers LS, Stuiver MH (2004). Isolation and characterisation of a class of carbohydrate oxidases from higher plants, with a role in active defence. Plant J 39:147–160.

    Article  PubMed  CAS  Google Scholar 

  • Dempsey, D.A., and Klessig, D.F. (1999). Salicylic acid and disease resistance in plants. Crit. Rev. Plant Sci. 18, 547–575.

    Article  CAS  Google Scholar 

  • Dhinds R S, Plumb-Dhindsa, Thorpe T A (1981) Leaf senescence correlated with increased leaves of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Exp. Bot. 32: 93–101.

    Article  Google Scholar 

  • Dixon RA, Lamb CJ (1990). Molecular communication in plantmicrobial pathogen interactions. Annu Rev Plant Physiol Plant Mol Biol 41:339–367.

    Article  CAS  Google Scholar 

  • Duan Wang, Alieta Eyles, David Mandich, Pierluigi Bonello (2006). Systemic aspects of host-pathogen interactions in Austrian pine. Physiol Mol Plant Pathol 68: 149–157.

    Article  CAS  Google Scholar 

  • Esnault R, Buffard D, Breda C, Sallaud C, E1 Turk J, Kondorosi A (1993). Pathological and molecular characterizations of alfalfa interactions with compatible and incompatible bacteria, Xanthomonas campestris pv. alfalfae and Pseudomonas syringae pv. pisi. Mol Plant-Microbe Interact 6:655–664.

    PubMed  CAS  Google Scholar 

  • Fagoaga C, Rodrigo I, Conejero V, Hinarejos C, Tuset JJ, Arnau J, Pina JA, Navarro L, Peña L (2001). Increased tolerance to Phytophthora citrophthora in transgenic orange plants constitutively expressing a tomato pathogenesis related protein PR-5. Mol Breed 7:175–185.

    Article  CAS  Google Scholar 

  • Flor, H. (1971). Current status of gene-for-gene concept. Annu. Rev. Phytopathol. 9: 275–296.

    Article  Google Scholar 

  • Fobert PR, Despres C (2005). Redox control of systemic acquired resistance. Curr Opin Plant Biol 8:378–382.

    Article  PubMed  CAS  Google Scholar 

  • Giannopolitis C N, Ries S K (1977). Superoxide dismutase. I. Occurrence in higher plants. Plant Physio1.59: 309–314.

    Article  CAS  Google Scholar 

  • Gilbert W. B., D. L. Davis (1971). Influence of fertility ratios on winter hardiness of bermudagrass. Agron. J. 63: 591–593.

    Article  Google Scholar 

  • Grover A, Gowthaman R (2003). Strategies for development of fungusresistant transgenic plants. Curr Sci 84:330–340.

    Google Scholar 

  • Guy GR, Philip R, Tan YH (1994). Analysis of cellular phosphoproteins by two-dimensional gel electrophoresis: applications for cell signalling in normal and cancer cells. Electrophoresis 15:417–420.

    Article  PubMed  CAS  Google Scholar 

  • Halliwel B (1984). Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts. Chem. Phys. 1apids 44: 327–340.

    Google Scholar 

  • Ham KS, Wu SC, Darvill AG, Albersheim P (1997). Fungal proteins secrete an inhibitor protein that distinguishes isoforms of plant pathogenesis-related endo-b-1,3-glucanases. Plant J 11:169–179.

    Article  CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1997). Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48:575–607.

    Article  PubMed  CAS  Google Scholar 

  • Harmon, A.C., Yoo, BC. and McCaffery, C (1994). Pseudosubstrate inhibition of CDPK, a protein kinase with a calmodulin-like domain. Biochemistry 33: 7278–7287.

    Article  PubMed  CAS  Google Scholar 

  • Heath R I, Packer L (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Bioehem. Biophys 125: 189–198.

    Article  CAS  Google Scholar 

  • Hollis T, Honda Y, Fuzamizo T, Marcottet E, Day PJ, Robertus JD (1997). Kinetic analysis of barley chitinase. Arch Biochem Biophys 344:335–342.

    Article  PubMed  CAS  Google Scholar 

  • Jing Ding, Houlong Cheng, Xinqing Jin, Hitoshi Araki, Yonghua Yang, Dacheng Tian (2007). Contrasting patterns of evolution between allelic groups at a single locus in Arabidopsis. Genetica 129:235–242.

    Article  CAS  Google Scholar 

  • John H Laity, Brian M Lee, Peter E Wright (2001). Zinc finger proteins: new insights into structural and functional diversity. Current Opinion in Structural Biology, 11:39–46.

    Article  PubMed  CAS  Google Scholar 

  • Keen, N.T. (1990). Gene-for-gene complementarity in plant-pathogen interactions. Annu. Rev. Genet. 24, 447–463.

    Article  PubMed  CAS  Google Scholar 

  • Kim ST, Kim SG, Hwang DH, Kang SY, Kim HJ, Lee BH, Lee JJ, Kang KY (2004). Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics 4:3569–3578.

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa K, Skowyra D, Elledge S J (1999). SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol Cel1, 4: 21–33.

    Article  CAS  Google Scholar 

  • Knight H, Knight MR (2001). Abiotic stress signaling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267.

    Article  PubMed  CAS  Google Scholar 

  • Kombrink E, Somssich IE (1995). Defence responses of plants to pathogens. Adv Bot Res 21:2–26.

    Google Scholar 

  • Kuranda MJ, Robbins PW (1991). Chitinase is required for cell separation during growth of Saccharomzces cerevisiae. J Biol Chem 266:19758–19767.

    PubMed  CAS  Google Scholar 

  • Melander M (2004). Transgenic resistance to pathogens and pests. Doctor’s dissertation, Swedish University of Agricultural Sciences, Alnarp, 1–44.

    Google Scholar 

  • Melchers LS, Stuiver MH (2000). Novel genes for disease resistance breeding. Curr Opin Plant Biol 3:147–152.

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003). Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834

    Article  PubMed  CAS  Google Scholar 

  • Ndimba BK, Chivasa S, Hamilton JM, Simon WJ, Slabas AR (2003). Proteomic analysis of changes in the extracellular matrix of Arabidopsis cell suspension cultures induced by fungal elicitors. Proteomics 3:1047–1059

    Article  PubMed  CAS  Google Scholar 

  • Park C-J, Kim K-J, Shin R, Park JM, Shin Y-C, Paek K-H (2004). Pathogenesis-related protein 10 from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J 37:186–198

    PubMed  CAS  Google Scholar 

  • Parker, J.E., Holub, E.B., Frost, L.N., Falk, A., Gunn, N.D., and Daniels, M.J. (1996). Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell 8, 2033–2046.

    Article  PubMed  CAS  Google Scholar 

  • Qureshi MI, Qadir S, Zolla L (2007). Proteomics-based dissection of stress-responsive pathways in plants. J Plant Physiol 164:1239–1260.

    Article  PubMed  CAS  Google Scholar 

  • Rep M, Dekker HL, Vossen JH, de Boer AD, Houterman PM, Speijer D, Back JW, de Koster CG, Cornelissen BJC (2002). Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato. Plant Physiol 130:904–917.

    Article  PubMed  CAS  Google Scholar 

  • Romeis, T., Piedras, P., Zhang, S., Klessig, D.F., Hirt, H. and Jones, J.D.G (1999). Rapid Avr9- and Cf-9-dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound and salicylate responses. Plant Cell 11: 273–287.

    Article  PubMed  CAS  Google Scholar 

  • Rose LE, Bittner-Eddy PD, Langley CH, Holub EB, Michelmore RW, Beynon JL (2004). Maintenance of extreme amino acid diversity at the disease resistance gene, RPP13, in Arabidopsis thaliana. Genetics 166:1517–1527.

    Article  PubMed  CAS  Google Scholar 

  • Schlumbaum A, Mauch F. Plant chitinases are potent inhibitors of fungal growth (1986). Nature, 324(4376): 365–367.

    Article  CAS  Google Scholar 

  • Shinshi H, Neuhaus J M, Ryais J, Meins F (1990). Structure of tobacco endochitinase gene: evidence that different chitinase genes can arise by transposition of sequences enconing a cysteine-rich domain. Plant mol. Biol., 14: 357–368.

    Article  PubMed  CAS  Google Scholar 

  • Slusarenko AJ, Fraser RSS, Van Loon LC (2000). Mechanisms of resistance to plant diseases. Kluwer, Dordrecht.

    Google Scholar 

  • Stintzi A, Heitz T, Prasad V, Wiedemann-Merdinoglu S, Kauffmann S, Geoffroy P, Legrand M, Fritig B (1993). Plant pathogenesis-related proteins and their role in defence against pathogens. Biochemie 75:687–706.

    Article  CAS  Google Scholar 

  • Takahashi A., Casaia C. (2003). HSP90 interacts with RARL and SGT1 and is essential for RPS2 mediated disease resistance in ArabidopsisProc Natl Acad Sci USA, 100: 11777–11782.

    Article  PubMed  CAS  Google Scholar 

  • Tornero P, Merritt P, Sadanandom A, Shirasu K, Innes RW, Dangl JL (2002). RAR1 and NDR1 contribute quantitatively to disease resistance in Arabidopsis, and their relative contributions are dependent on the R gene assayed. Plant Cell 14:1005–1015.

    Article  PubMed  CAS  Google Scholar 

  • Tuzun S, Somanchi A (2006). The possible role of PR proteins in multigenic and induced systemic resistance. In: Tuzun S, Bent E (eds) Multigenic and induced systemic resistance in plants. Springer, New York, pp 112–142.

    Chapter  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006). Significance of inducible defence-related proteins in infected plants. Annu Rev Phytopathol 44:1–28.

    Article  CAS  Google Scholar 

  • Wang J-Y, Chen S-Y, Liang Y-Y, Lin W-X. (2006). Improvement of ISO-DALT electrophoresis system. J Fujian Agric & For Univ, 35(2): 187–190 (in Chinese).

    Google Scholar 

  • Wang Y, Yang L, Xu H, Li Q, Ma Z, Chu C (2005). Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum. Proteomics, 5:4496–4503.

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Shah J, Klessig DF (1997). Signal perception and transduction in plant defence responses. Genes Dev 11:1621–1639.

    Article  PubMed  CAS  Google Scholar 

  • Young-Su Seo, Sang-Kyu Lee, Min-Young Song, Jung-Pil Suh, Tae-Ryong Hahn, Pamela Ronald, and Jong-Seong leon (2008). The HSP90- SGT1-RAR1 molecular chaperone complex: a core modulator in plant immunity. J Plant Biol 51:1–10.

    Article  Google Scholar 

  • Yu Gao-jing, Lin Wen-xiong (2006). Physiological response to heat stress in tall fescue turfgrasses. Pratacultural Science 23(2): 75–84 (in chinese).

    CAS  Google Scholar 

  • Yumiko Shirano, Pradeep Kachroo, Jyoti Shah, Daniel F. Klessig (2002). A gain-of-function mutation in an Arabidopsis toll interleukin1 receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. The Plant Cell, 14:3149–3162.

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Eudes F, Laroche A (2006). Identification of differentially regulated proteins in response to a compatible interaction between the pathogen Fusarium graminearum and its host, Triticum aestivum. Proteomics, 6:4599–4609.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daren Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, S., Zhou, Y., Chen, G. et al. Molecular responses to the fungal pathogen Gibberella fujikuroi in the leaves of chewing cane (Saccharum officinarum L.). Sugar Tech 12, 36–46 (2010). https://doi.org/10.1007/s12355-010-0008-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-010-0008-6

Keywords

Navigation