Skip to main content

Advertisement

Log in

Hot spot imaging in cardiovascular diseases: an information statement from SNMMI, ASNC, and EANM

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

This information statement from the Society of Nuclear Medicine and Molecular Imaging, American Society of Nuclear Cardiology, and European Association of Nuclear Medicine describes the performance, interpretation, and reporting of hot spot imaging in nuclear cardiology. The field of nuclear cardiology has historically focused on cold spot imaging for the interpretation of myocardial ischemia and infarction. Hot spot imaging has been an important part of nuclear medicine, particularly for oncology or infection indications, and the use of hot spot imaging in nuclear cardiology continues to expand. This document focuses on image acquisition and processing, methods of quantification, indications, protocols, and reporting of hot spot imaging. Indications discussed include myocardial viability, myocardial inflammation, device or valve infection, large vessel vasculitis, valve calcification and vulnerable plaques, and cardiac amyloidosis. This document contextualizes the foundations of image quantification and highlights reporting in each indication for the cardiac nuclear imager.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zaret BL, Strauss HW, Martin ND, Wells HP, Flamm MD. Noninvasive regional myocardial perfusion with radioactive potassium: Study of patients at rest, with exercise and during angina pectoris. N Engl J Med 1973;288:809‐12.

    Article  CAS  PubMed  Google Scholar 

  2. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: The Lugano classification. JCO 2014;32:3059‐67.

    Article  Google Scholar 

  3. Kinahan PE, Fletcher JW. Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MR 2010;31:496‐505.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: Variations with body weight and a method for correction. Radiology 1993;189:847‐50.

    Article  CAS  PubMed  Google Scholar 

  5. Nahmias C, Wahl LM. Reproducibility of standardized uptake value measurements determined by 18F-FDG PET in malignant tumors. J Nucl Med 2008;49:1804‐8.

    Article  PubMed  Google Scholar 

  6. van den Hoff J, Oehme L, Schramm G, Maus J, Lougovski A, Petr J, et al. The PET-derived tumor-to-blood standard uptake ratio (SUR) is superior to tumor SUV as a surrogate parameter of the metabolic rate of FDG. EJNMMI Res 2013;3:77.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Furuya S, Manabe O, Ohira H, Hirata K, Aikawa T, Naya M, et al. Which is the proper reference tissue for measuring the change in FDG PET metabolic volume of cardiac sarcoidosis before and after steroid therapy? EJNMMI Res 2018;8:94.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Meignan M, Cottereau AS, Versari A, Chartier L, Dupuis J, Boussetta S, et al. Baseline metabolic tumor volume predicts outcome in high–tumor-burden follicular lymphoma: A pooled analysis of three multicenter studies. JCO 2016;34:3618‐26.

    Article  Google Scholar 

  9. Ahmadian A, Brogan A, Berman J, Sverdlov AL, Mercier G, Mazzini M, et al. Quantitative interpretation of FDG PET/CT with myocardial perfusion imaging increases diagnostic information in the evaluation of cardiac sarcoidosis. J Nucl Cardiol 2014;21:925‐39.

    Article  PubMed  Google Scholar 

  10. Miller RJH, Cadet S, Pournazari P, Pope A, Kransdorf E, Hamilton MA, Patel J, Hayes S, Friedman J, Thomson L, Tamarappoo B, Berman DS, Slomka PJ. Quantitative assessment of cardiac hypermetabolism and perfusion for diagnosis of cardiac sarcoidosis. J Nucl Cardiol 2020.

  11. Kwiecinski J, Cadet S, Daghem M, Lassen ML, Dey D, Dweck MR, et al. Whole-vessel coronary 18F-sodium fluoride PET for assessment of the global coronary microcalcification burden. Eur J Nucl Med Mol Imaging 2020;47:1736‐45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hickeson M, Yun M, Matthies A, Zhuang H, Adam L-E, Lacorte L, et al. Use of a corrected standardized uptake value based on the lesion size on CT permits accurate characterization of lung nodules on FDG-PET. Eur J Nucl Med Mol Imaging 2002;29:1639‐47.

    Article  PubMed  Google Scholar 

  13. Slomka PJ, Pan T, Germano G. Recent advances and future progress in PET instrumentation. Semin Nucl Med 2016;46:5‐19.

    Article  PubMed  Google Scholar 

  14. Wu J, Liu C. Recent advances in cardiac SPECT instrumentation and imaging methods. Phys Med Biol 2019;64:06TR01.

    Article  CAS  PubMed  Google Scholar 

  15. Huo L, Li N, Wu H, Zhu W, Xing H, Ba J, et al. Performance evaluation of a new high-sensitivity time-of-flight clinical PET/CT system. EJNMMI Phys 2018;5:29.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Surti S. Update on time-of-flight PET imaging. J Nucl Med 2015;56:98‐105.

    Article  PubMed  Google Scholar 

  17. Surti S, Viswanath V, Daube-Witherspoon ME, Conti M, Casey ME, Karp JS. Benefit of improved performance with state-of-the art digital PET/CT for Lesion Detection in Oncology. J Nucl Med 2020;61:1684‐90.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 1984;8:306‐16.

    CAS  PubMed  Google Scholar 

  19. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601‐9.

    Article  CAS  PubMed  Google Scholar 

  20. Rogasch JM, Suleiman S, Hofheinz F, Bluemel S, Lukas M, Amthauer H, et al. Reconstructed spatial resolution and contrast recovery with Bayesian penalized likelihood reconstruction (Q.Clear) for FDG-PET compared to time-of-flight (TOF) with point spread function (PSF). EJNMMI Phys 2020;7:2.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Alessio AM, Stearns CW, Tong S, Ross SG, Kohlmyer S, Ganin A, et al. Application and evaluation of a measured spatially variant system model for PET image reconstruction. IEEE Trans Med Imaging 2010;29:938‐49.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tong S, Alessio AM, Kinahan PE. Noise and signal properties in PSF-based fully 3D PET image reconstruction: An experimental evaluation. Phys Med Biol 2010;55:1453‐73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Geworski L, Knoop BO, de Wit M, Ivancević V, Bares R, Munz DL. Multicenter comparison of calibration and cross calibration of PET scanners. J Nucl Med 2002;43:635‐9.

    PubMed  Google Scholar 

  24. Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med 2009;50:11S-20S.

    Article  CAS  PubMed  Google Scholar 

  25. Alvi RM, Young BD, Shahab Z, Pan H, Winkler J, Herzog E, et al. Repeatability and optimization of FDG positron emission tomography for evaluation of cardiac sarcoidosis. JACC Cardiovasc Imaging 2019;12:1284‐7.

    Article  PubMed  Google Scholar 

  26. Ziai P, Hayeri MR, Salei A, Salavati A, Houshmand S, Alavi A, et al. Role of optimal quantification of FDG PET imaging in the clinical practice of radiology. Radiographics 2016;36:481‐96.

    Article  PubMed  Google Scholar 

  27. Lu Y, Sweiss N. Role of 18F-FDG PET/CT in Cardiac sarcoid detection and therapy monitoring: Addition to the expert consensus. J Nucl Med 2018.

  28. van der Vos CS, Arens AIJ, Hamill JJ, Hofmann C, Panin VY, Meeuwis APW, et al. Metal artifact reduction of CT scans to improve PET/CT. J Nucl Med 2017;58:1867‐72.

    Article  PubMed  Google Scholar 

  29. Zukotynski KA, Fahey FH, Laffin S, Davis R, Treves ST, Grant FD, et al. Constant ambient temperature of 24°C significantly reduces FDG uptake by brown adipose tissue in children scanned during the winter. Eur J Nucl Med Mol Imaging 2009;36:602‐6.

    Article  PubMed  Google Scholar 

  30. Agrawal A, Nair N, Baghel NS. A novel approach for reduction of brown fat uptake on FDG PET. Br J Radiol 2009;82:626‐31.

    Article  CAS  PubMed  Google Scholar 

  31. Rakheja R, Ciarallo A, Alabed YZ, Hickeson M. Intravenous administration of diazepam significantly reduces brown fat activity on 18F-FDG PET/CT. Am J Nucl Med Mol Imaging 2011;1:29‐35.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Takahashi Y, Oriuchi N, Otake H, Endo K, Murase K. Variability of lesion detectability and standardized uptake value according to the acquisition procedure and reconstruction among five PET scanners. Ann Nucl Med 2008;22:543‐8.

    Article  PubMed  Google Scholar 

  33. Vriens D, Visser EP, de Geus-Oei L-F, Oyen WJG. Methodological considerations in quantification of oncological FDG PET studies. Eur J Nucl Med Mol Imaging 2010;37:1408‐25.

    Article  PubMed  Google Scholar 

  34. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med 2007;48:932‐45.

    Article  PubMed  Google Scholar 

  35. Abella M, Alessio AM, Mankoff DA, MacDonald LR, Vaquero JJ, Desco M, et al. Accuracy of CT-based attenuation correction in PET/CT bone imaging. Phys Med Biol 2012;57:2477‐90.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bernstine H, Sopov V, Yefremov N, Nidam M, Gabbai M, Sosna J, et al. Comparison of 80 and 120 kVp contrast-enhanced CT for attenuation correction in PET/CT, using quantitative analysis and reporter assessment of PET image quality. Clin Radiol 2014;69:e17-24.

    Article  CAS  PubMed  Google Scholar 

  37. Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur J Nucl Med Mol Imaging 2015;42:328‐54.

    Article  CAS  PubMed  Google Scholar 

  38. Slart RHJA, Glaudemans AWJM, Gheysens O, Lubberink M, Kero T, Dweck MR, et al. Procedural recommendations of cardiac PET/CT imaging: Standardization in inflammatory-, infective-, infiltrative-, and innervation- (4Is) related cardiovascular diseases: A joint collaboration of the EACVI and the EANM: Summary. Eur Heart J Cardiovas Imaging 2020;21:1320‐30.

    Article  Google Scholar 

  39. Koopman D, Jager PL, Slump CH, Knollema S, van Dalen JA. SUV variability in EARL-accredited conventional and digital PET. EJNMMI Res 2019;9:106.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Westerterp M, Pruim J, Oyen W, Hoekstra O, Paans A, Visser E, et al. Quantification of FDG PET studies using standardised uptake values in multi-centre trials: Effects of image reconstruction, resolution and ROI definition parameters. Eur J Nucl Med Mol Imaging 2007;34:392‐404.

    Article  PubMed  Google Scholar 

  41. Doot RK, Pierce LA, Byrd D, Elston B, Allberg KC, Kinahan PE. Biases in multicenter longitudinal PET standardized uptake value measurements. Transl Oncol 2014;7:48‐54.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Doot RK, Scheuermann JS, Christian PE, Karp JS, Kinahan PE. Instrumentation factors affecting variance and bias of quantifying tracer uptake with PET/CT. Med Phys 2010;37:6035‐46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fahey FH, Kinahan PE, Doot RK, Kocak M, Thurston H, Poussaint TY. Variability in PET quantitation within a multicenter consortium. Med Phys 2010;37:3660‐6.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lockhart CM, MacDonald LR, Alessio AM, McDougald WA, Doot RK, Kinahan PE. Quantifying and reducing the effect of calibration error on variability of PET/CT standardized uptake value measurements. J Nucl Med 2011;52:218‐24.

    Article  PubMed  Google Scholar 

  45. Pierce LA, Elston BF, Clunie DA, Nelson D, Kinahan PE. A digital reference object to analyze calculation accuracy of PET standardized uptake value. Radiology 2015;277:538‐45.

    Article  PubMed  Google Scholar 

  46. Velasquez LM, Boellaard R, Kollia G, Hayes W, Hoekstra OS, Lammertsma AA, et al. Repeatability of 18F-FDG PET in a multicenter phase I study of patients with advanced gastrointestinal malignancies. J Nucl Med 2009;50:1646‐54.

    Article  CAS  PubMed  Google Scholar 

  47. Lassen ML, Kwiecinski J, Dey D, Cadet S, Germano G, Berman DS, et al. Triple-gated motion and blood pool clearance corrections improve reproducibility of coronary 18F-NaF PET. Eur J Nucl Med Mol Imaging 2019;46:2610‐20.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Panetta JV, Daube-Witherspoon ME, Karp JS. Validation of phantom-based harmonization for patient harmonization. Med Phys 2017;44:3534‐44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nahmias C, Hanna WT, Wahl LM, Long MJ, Hubner KF, Townsend DW. Time course of early response to chemotherapy in non-small cell lung cancer patients with 18F-FDG PET/CT. J Nucl Med 2007;48:744‐51.

    Article  CAS  PubMed  Google Scholar 

  50. Joo Hyun O, Lodge MA, Wahl RL. Practical PERCIST: A simplified guide to PET response criteria in solid tumors 1.0. Radiology 2016;280:576‐84.

    Article  Google Scholar 

  51. Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys 1998;25:2046‐53.

    Article  CAS  PubMed  Google Scholar 

  52. Hutton BF, Buvat I, Beekman FJ. Review and current status of SPECT scatter correction. Phys Med Biol 2011;56:R85-112.

    Article  PubMed  Google Scholar 

  53. Miyaji N, Miwa K, Tokiwa A, Ichikawa H, Terauchi T, Koizumi M, et al. Phantom and clinical evaluation of bone SPECT/CT image reconstruction with xSPECT algorithm. EJNMMI Res 2020;10:71.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ren C, Ren J, Tian Z, Du Y, Hao Z, Zhang Z, et al. Assessment of cardiac amyloidosis with 99mTc-pyrophosphate (PYP) quantitative SPECT. EJNMMI Phys 2021;8:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Scully PR, Morris E, Patel KP, Treibel TA, Burniston M, Klotz E, et al. DPD quantification in cardiac amyloidosis: A novel imaging biomarker. JACC Cardiovasc Imaging 2020;13:1353‐63.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wollenweber T, Rettl R, Kretschmer-Chott E, Rasul S, Kulterer O, Rainer E, et al. In vivo quantification of myocardial amyloid deposits in patients with suspected Transthyretin-Related Amyloidosis (ATTR). J Clin Med 2020;9:E3446.

    Article  Google Scholar 

  57. Caobelli F, Braun M, Haaf P, Wild D, Zellweger MJ. Quantitative 99mTc-DPD SPECT/CT in patients with suspected ATTR cardiac amyloidosis: Feasibility and correlation with visual scores. J Nucl Cardiol 2020;27:1456‐63.

    Article  PubMed  Google Scholar 

  58. Ramsay SC, Lindsay K, Fong W, Patford S, Younger J, Atherton J. Tc-HDP quantitative SPECT/CT in transthyretin cardiac amyloid and the development of a reference interval for myocardial uptake in the non-affected population. Eur J Hybrid Imaging 2018;2:17.

    Article  PubMed  Google Scholar 

  59. Dorbala S, Park M-A, Cuddy S, Singh V, Sullivan K, Kim S, Falk RH, Taqueti V, Skali H, Blankstein R, Bay C, Kijewski MF, Di Carli MF. Absolute quantitation of cardiac 99m Tc-pyrophosphate using cadmium zinc telluride-based SPECT/CT. J Nucl Med 2020:jnumed.120.247312.

  60. Bellevre D, Bailliez A, Delelis F, Blaire T, Agostini D, Mouquet F, Maréchaux S, Manrique A. Quantitation of myocardial 99mTc-HMDP uptake with new SPECT/CT cadmium zinc telluride (CZT) camera in patients with transthyretin-related cardiac amyloidosis: Ready for clinical use? J Nucl Cardiol 2020.

  61. Tamarappoo B, Otaki Y, Manabe O, Hyun M, Cantu S, Arnson Y, et al. Simultaneous Tc-99m PYP/Tl-201 dual-isotope SPECT myocardial imaging in patients with suspected cardiac amyloidosis. J Nucl Cardiol 2020;27:28‐37.

    Article  PubMed  Google Scholar 

  62. Miller RJH, Cadet S, Mah D, Pournazari P, Chan D, Fine NM, Berman DS, Slomka PJ. Diagnostic and prognostic value of Technetium-99m pyrophosphate uptake quantitation for transthyretin cardiac amyloidosis. J Nucl Cardiol 2021.

  63. Schindler TH, Bateman TM, Berman DS, Chareonthaitawee P, De Blanche LE, Dilsizian V, et al. Appropriate use criteria for PET myocardial perfusion imaging. J Nucl Med 2020;61:1221‐65.

    Article  CAS  PubMed  Google Scholar 

  64. Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Dorbala S, et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol 2016;23:1187‐226.

    Article  PubMed  Google Scholar 

  65. Nensa F, Bamberg F, Rischpler C, Menezes L, Poeppel TD, la Fougère C, et al. Hybrid cardiac imaging using PET/MRI: A joint position statement by the European Society of Cardiovascular Radiology (ESCR) and the European Association of Nuclear Medicine (EANM). Eur Radiol 2018;28:4086‐101.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Garcia MJ, Kwong RY, Scherrer-Crosbie M, Taub CC, Blankstein R, Lima J, et al. State of the art: Imaging for myocardial viability: A scientific statement from the American Heart Association. Circ Cardiovasc Imaging 2020;13:e000053.

    Article  PubMed  Google Scholar 

  67. Hage FG, Venkataraman R, Aljaroudi W, Bravo PE, McLarry J, Faulkner M, et al. The impact of viability assessment using myocardial perfusion imaging on patient management and outcome. J Nucl Cardiol 2010;17:378‐89.

    Article  PubMed  Google Scholar 

  68. Iribarne A, DiScipio AW, Leavitt BJ, Baribeau YR, McCullough JN, Weldner PW, et al. Comparative effectiveness of coronary artery bypass grafting versus percutaneous coronary intervention in a real-world Surgical Treatment for Ischemic Heart Failure trial population. J Thorac Cardiovasc Surg 2018;156:1410‐21.

    Article  PubMed  Google Scholar 

  69. Jose R, Shetty A, Krishna N, Chathoth V, Bhaskaran R, Jayant A, et al. Early and mid-term outcomes of patients undergoing coronary artery bypass grafting in ischemic cardiomyopathy. J Am Heart Assoc 2019;8:e010225.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Velazquez EJ, Lee KL, Jones RH, Al-Khalidi HR, Hill JA, Panza JA, et al. Coronary-artery bypass surgery in patients with ischemic cardiomyopathy. N Engl J Med 2016;374:1511‐20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Panza JA, Ellis AM, Al-Khalidi HR, Holly TA, Berman DS, Oh JK, et al. Myocardial viability and long-term outcomes in ischemic cardiomyopathy. N Engl J Med 2019;381:739‐48.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bonow RO, Maurer G, Lee KL, Holly TA, Binkley PF, Desvigne-Nickens P, et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med 2011;364:1617‐25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, et al. 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: Developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 2009;119:e391-479.

    PubMed  Google Scholar 

  74. Beanlands RSB, Nichol G, Huszti E, Humen D, Racine N, Freeman M, et al. F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: A randomized, controlled trial (PARR-2). J Am Coll Cardiol 2007;50:2002‐12.

    Article  PubMed  Google Scholar 

  75. Abraham A, Nichol G, Williams KA, Guo A, deKemp RA, Garrard L, et al. 18F-FDG PET imaging of myocardial viability in an experienced center with access to 18F-FDG and integration with clinical management teams: The Ottawa-FIVE substudy of the PARR 2 trial. J Nucl Med 2010;51:567‐74.

    Article  PubMed  Google Scholar 

  76. Gropler RJ, Siegel BA, Lee KJ, Moerlein SM, Perry DJ, Bergmann SR, et al. Nonuniformity in myocardial accumulation of fluorine-18-fluorodeoxyglucose in normal fasted humans. J Nucl Med 1990;31:1749‐56.

    CAS  PubMed  Google Scholar 

  77. Sperry BW. Opportunities to improve image quality in PET myocardial viability imaging in diabetics. J Nucl Cardiol 2021.

  78. Baer FM, Voth E, Deutsch HJ, Schneider CA, Horst M, de Vivie ER, et al. Predictive value of low dose dobutamine transesophageal echocardiography and fluorine-18 fluorodeoxyglucose positron emission tomography for recovery of regional left ventricular function after successful revascularization. J Am Coll Cardiol 1996;28:60‐9.

    Article  CAS  PubMed  Google Scholar 

  79. Slomka P, Berman DS, Alexanderson E, Germano G. The role of PET quantification in cardiovascular imaging. Clin Transl Imaging 2014;2:343‐58.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Food and Drug Administration. New Drug Application: Fludeoxyglucose F 18 Injection. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2005/021870lbl.pdf.

  81. Baughman RP, Teirstein AS, Judson MA, Rossman MD, Yeager H, Bresnitz EA, et al. Clinical characteristics of patients in a case control study of sarcoidosis. Am J Respir Crit Care Med 2001;164:1885‐9.

    Article  CAS  PubMed  Google Scholar 

  82. Lynch JP, Hwang J, Bradfield J, Fishbein M, Shivkumar K, Tung R. Cardiac involvement in sarcoidosis: Evolving concepts in diagnosis and treatment. Semin Respir Crit Care Med 2014;35:372‐90.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Perry A, Vuitch F. Causes of death in patients with sarcoidosis. A morphologic study of 38 autopsies with clinicopathologic correlations. Arch Pathol Lab Med 1995;119:167‐72.

    CAS  PubMed  Google Scholar 

  84. Nelson JE, Kirschner PA, Teirstein AS. Sarcoidosis presenting as heart disease. Sarcoidosis Vasc Diffuse Lung Dis 1996;13:178‐82.

    CAS  PubMed  Google Scholar 

  85. Slart RHJA, Glaudemans AWJM, Lancellotti P, Hyafil F, Blankstein R, Schwartz RG, et al. A joint procedural position statement on imaging in cardiac sarcoidosis: From the Cardiovascular and Inflammation & Infection Committees of the European Association of Nuclear Medicine, the European Association of Cardiovascular Imaging, and the American Society of Nuclear Cardiology. J Nucl Cardiol 2018;25:298‐319.

    Article  PubMed  Google Scholar 

  86. Birnie DH, Sauer WH, Bogun F, Cooper JM, Culver DA, Duvernoy CS, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm 2014;11:1305‐23.

    Article  PubMed  Google Scholar 

  87. Ahmadian A, Pawar S, Govender P, Berman J, Ruberg FL, Miller EJ. The response of FDG uptake to immunosuppressive treatment on FDG PET/CT imaging for cardiac sarcoidosis. J Nucl Cardiol 2017;24:413‐24.

    Article  PubMed  Google Scholar 

  88. Lee P-I, Cheng G, Alavi A. The role of serial FDG PET for assessing therapeutic response in patients with cardiac sarcoidosis. J Nucl Cardiol 2017;24:19‐28.

    Article  PubMed  Google Scholar 

  89. Osborne MT, Hulten EA, Singh A, Waller AH, Bittencourt MS, Stewart GC, et al. Reduction in 18F-fluorodeoxyglucose uptake on serial cardiac positron emission tomography is associated with improved left ventricular ejection fraction in patients with cardiac sarcoidosis. J Nucl Cardiol 2014;21:166‐74.

    Article  PubMed  Google Scholar 

  90. Nensa F, Kloth J, Tezgah E, Poeppel TD, Heusch P, Goebel J, et al. Feasibility of FDG-PET in myocarditis: Comparison to CMR using integrated PET/MRI. J Nucl Cardiol 2018;25:785‐94.

    Article  PubMed  Google Scholar 

  91. Osborne MT, Hulten EA, Murthy VL, Skali H, Taqueti VR, Dorbala S, et al. Patient preparation for cardiac fluorine-18 fluorodeoxyglucose positron emission tomography imaging of inflammation. J Nucl Cardiol 2017;24:86‐99.

    Article  PubMed  Google Scholar 

  92. Langah R, Spicer K, Gebregziabher M, Gordon L. Effectiveness of prolonged fasting 18f-FDG PET-CT in the detection of cardiac sarcoidosis. J Nucl Cardiol 2009;16:801‐10.

    Article  PubMed  Google Scholar 

  93. Soussan M, Brillet P-Y, Nunes H, Pop G, Ouvrier M-J, Naggara N, et al. Clinical value of a high-fat and low-carbohydrate diet before FDG-PET/CT for evaluation of patients with suspected cardiac sarcoidosis. J Nucl Cardiol 2013;20:120‐7.

    Article  PubMed  Google Scholar 

  94. Lu Y, Grant C, Xie K, Sweiss NJ. Suppression of myocardial 18F-FDG uptake through prolonged high-fat, high-protein, and very-low-carbohydrate diet before FDG-PET/CT for evaluation of patients with suspected cardiac sarcoidosis. Clin Nucl Med 2017;42:88‐94.

    Article  PubMed  Google Scholar 

  95. Harisankar CNB, Mittal BR, Agrawal KL, Abrar ML, Bhattacharya A. Utility of high fat and low carbohydrate diet in suppressing myocardial FDG uptake. J Nucl Cardiol 2011;18:926‐36.

    Article  PubMed  Google Scholar 

  96. Manabe O, Yoshinaga K, Ohira H, Masuda A, Sato T, Tsujino I, et al. The effects of 18-h fasting with low-carbohydrate diet preparation on suppressed physiological myocardial (18)F-fluorodeoxyglucose (FDG) uptake and possible minimal effects of unfractionated heparin use in patients with suspected cardiac involvement sarcoidosis. J Nucl Cardiol 2016;23:244‐52.

    Article  PubMed  Google Scholar 

  97. Masuda A, Naya M, Manabe O, Magota K, Yoshinaga K, Tsutsui H, et al. Administration of unfractionated heparin with prolonged fasting could reduce physiological 18F-fluorodeoxyglucose uptake in the heart. Acta Radiol 2016;57:661‐8.

    Article  PubMed  Google Scholar 

  98. Nensa F, Tezgah E, Schweins K, Goebel J, Heusch P, Nassenstein K, et al. Evaluation of a low-carbohydrate diet-based preparation protocol without fasting for cardiac PET/MR imaging. J Nucl Cardiol 2017;24:980‐8.

    Article  PubMed  Google Scholar 

  99. Blankstein R, Osborne M, Naya M, Waller A, Kim CK, Murthy VL, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol 2014;63:329‐36.

    Article  PubMed  Google Scholar 

  100. Coulden R, Chung P, Sonnex E, Ibrahim Q, Maguire C, Abele J. Suppression of myocardial 18F-FDG uptake with a preparatory “Atkins-style” low-carbohydrate diet. Eur Radiol 2012;22:2221‐8.

    Article  PubMed  Google Scholar 

  101. Christopoulos G, Jouni H, Acharya GA, Blauwet LA, Kapa S, Bois J, Chareonthaitawee P, Rodriguez-Porcel MG. Suppressing physiologic 18-fluorodeoxyglucose uptake in patients undergoing positron emission tomography for cardiac sarcoidosis: The effect of a structured patient preparation protocol. J Nucl Cardiol 2019.

  102. Erba PA, Lancellotti P, Vilacosta I, Gaemperli O, Rouzet F, Hacker M, et al. Recommendations on nuclear and multimodality imaging in IE and CIED infections. Eur J Nucl Med Mol Imaging 2018;45:1795‐815.

    Article  PubMed  Google Scholar 

  103. Boursier C, Duval X, Bourdon A, Imbert L, Mahida B, Chevalier E, et al. ECG-gated cardiac FDG PET acquisitions significantly improve detectability of infective endocarditis. JACC Cardiovasc Imaging 2020;13:2691‐3.

    Article  PubMed  Google Scholar 

  104. Chareonthaitawee P, Beanlands RS, Chen W, Dorbala S, Miller EJ, Murthy VL, et al. Joint SNMMI-ASNC expert consensus document on the role of 18F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. J Nucl Cardiol 2017;24:1741‐58.

    Article  PubMed  Google Scholar 

  105. Divakaran S, Stewart GC, Lakdawala NK, Padera RF, Zhou W, Desai AS, et al. Diagnostic accuracy of advanced imaging in cardiac sarcoidosis. Circ Cardiovasc Imaging 2019;12:e008975.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Tahara N, Tahara A, Nitta Y, Kodama N, Mizoguchi M, Kaida H, et al. Heterogeneous myocardial FDG uptake and the disease activity in cardiac sarcoidosis. JACC Cardiovasc Imaging 2010;3:1219‐28.

    Article  PubMed  Google Scholar 

  107. Sperry BW, Tamarappoo BK, Oldan JD, Javed O, Culver DA, Brunken R, et al. Prognostic impact of extent, severity, and heterogeneity of abnormalities on 18F-FDG PET scans for suspected cardiac sarcoidosis. JACC Cardiovasc Imaging 2018;11:336‐45.

    Article  PubMed  Google Scholar 

  108. Mc Ardle BA, Birnie DH, Klein R, de Kemp RA, Leung E, Renaud J, et al. Is there an association between clinical presentation and the location and extent of myocardial involvement of cardiac sarcoidosis as assessed by 18F- fluorodoexyglucose positron emission tomography? Circ Cardiovasc Imaging 2013;6:617‐26.

    Article  PubMed  Google Scholar 

  109. Tuominen H, Haarala A, Tikkakoski A, Kähönen M, Nikus K, Sipilä K. FDG-PET in possible cardiac sarcoidosis: Right ventricular uptake and high total cardiac metabolic activity predict cardiovascular events. J Nucl Cardiol 2021;28:199‐205.

    Article  PubMed  Google Scholar 

  110. Kim J, Feller ED, Chen W, Liang Y, Dilsizian V. FDG PET/CT for early detection and localization of left ventricular assist device infection: Impact on patient management and outcome. JACC Cardiovasc Imaging 2019;12:722‐9.

    Article  CAS  PubMed  Google Scholar 

  111. Chen W, Dilsizian V. Diagnosis and image-guided therapy of cardiac left ventricular assist device infections. Semin Nucl Med 2020.

  112. Chen W, Kim J, Molchanova-Cook OP, Dilsizian V. The potential of FDG PET/CT for early diagnosis of cardiac device and prosthetic valve infection before morphologic damages ensue. Curr Cardiol Rep 2014;16:459.

    Article  PubMed  Google Scholar 

  113. Saby L, Laas O, Habib G, Cammilleri S, Mancini J, Tessonnier L, et al. Positron emission tomography/computed tomography for diagnosis of prosthetic valve endocarditis: Increased valvular 18F-fluorodeoxyglucose uptake as a novel major criterion. J Am Coll Cardiol 2013;61:2374‐82.

    Article  PubMed  Google Scholar 

  114. Chen W, Sajadi MM, Dilsizian V. Merits of FDG PET/CT and functional molecular imaging over anatomic imaging with echocardiography and CT angiography for the diagnosis of cardiac device infections. JACC Cardiovasc Imaging 2018;11:1679‐91.

    Article  PubMed  Google Scholar 

  115. Chen W, Dilsizian V. Is 18F-flurodeoxyglucose positron emission tomography/computed tomography more reliable than clinical standard diagnosis for guiding patient management decisions in cardiac implantable electronic device infection? Circ Cardiovasc Imaging 2019;12:e009453.

    Article  PubMed  Google Scholar 

  116. Chen W, Dilsizian V. Molecular imaging of cardiovascular device infection: Targeting the bacteria or the host-pathogen immune response? J Nucl Med 2020;61:319‐26.

    Article  CAS  PubMed  Google Scholar 

  117. Rouzet F, Chequer R, Benali K, Lepage L, Ghodbane W, Duval X, et al. Respective performance of 18F-FDG PET and radiolabeled leukocyte scintigraphy for the diagnosis of prosthetic valve endocarditis. J Nucl Med 2014;55:1980‐5.

    Article  CAS  PubMed  Google Scholar 

  118. Caobelli F, Wollenweber T, Bavendiek U, Kühn C, Schütze C, Geworski L, et al. Simultaneous dual-isotope solid-state detector SPECT for improved tracking of white blood cells in suspected endocarditis. Eur Heart J 2017;38:436‐43.

    CAS  PubMed  Google Scholar 

  119. Glaudemans AWJM, de Vries EFJ, Vermeulen LEM, Slart RHJA, Dierckx RAJO, Signore A. A large retrospective single-centre study to define the best image acquisition protocols and interpretation criteria for white blood cell scintigraphy with 99mTc-HMPAO-labelled leucocytes in musculoskeletal infections. Eur J Nucl Med Mol Imaging 2013;40:1760‐9.

    Article  PubMed  Google Scholar 

  120. Calais J, Touati A, Grall N, Laouénan C, Benali K, Mahida B, et al. Diagnostic impact of 18F-fluorodeoxyglucose positron emission tomography/computed tomography and white blood cell SPECT/computed tomography in patients with suspected cardiac implantable electronic device chronic infection. Circ Cardiovasc Imaging 2019;12:e007188.

    Article  PubMed  Google Scholar 

  121. Camellino D, Paparo F, Morbelli SD, Pesce G, Bauckneht M, Bagnasco M, Cutolo M, Sambuceti G, Cimmino MA. Clinical and FDG-PET/CT correlates in patients with polymyalgia rheumatica. Clin Exp Rheumatol 2021.

  122. Blockmans D, Stroobants S, Maes A, Mortelmans L. Positron emission tomography in giant cell arteritis and polymyalgia rheumatica: Evidence for inflammation of the aortic arch. Am J Med 2000;108:246‐9.

    Article  CAS  PubMed  Google Scholar 

  123. Slart RHJA, Writing group, Reviewer group, Members of EANM Cardiovascular, Members of EANM Infection & Inflammation, Members of Committees, SNMMI Cardiovascular, Members of Council, PET Interest Group, Members of ASNC, EANM Committee Coordinator. FDG-PET/CT(A) imaging in large vessel vasculitis and polymyalgia rheumatica: Joint procedural recommendation of the EANM, SNMMI, and the PET Interest Grou. Eur J Nucl Med Mol Imaging 2018;45:1250‐69.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Quinn KA, Rosenblum JS, Rimland CA, Gribbons KB, Ahlman MA, Grayson PC. Imaging acquisition technique influences interpretation of positron emission tomography vascular activity in large-vessel vasculitis. Semin Arthritis Rheum 2020;50:71‐6.

    Article  CAS  PubMed  Google Scholar 

  125. Blockmans D, de Ceuninck L, Vanderschueren S, Knockaert D, Mortelmans L, Bobbaers H. Repetitive 18F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: A prospective study of 35 patients. Arthritis Rheum 2006;55:131‐7.

    Article  PubMed  Google Scholar 

  126. Wykrzykowska J, Lehman S, Williams G, Parker JA, Palmer MR, Varkey S, et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med 2009;50:563‐8.

    Article  PubMed  Google Scholar 

  127. Rogers IS, Nasir K, Figueroa AL, Cury RC, Hoffmann U, Vermylen DA, et al. Feasibility of FDG imaging of the coronary arteries: Comparison between acute coronary syndrome and stable angina. JACC Cardiovasc Imaging 2010;3:388‐97.

    Article  PubMed  Google Scholar 

  128. Cheng VY, Slomka PJ, Le Meunier L, Tamarappoo BK, Nakazato R, Dey D, et al. Coronary arterial 18F-FDG uptake by fusion of PET and coronary CT angiography at sites of percutaneous stenting for acute myocardial infarction and stable coronary artery disease. J Nucl Med 2012;53:575‐83.

    Article  CAS  PubMed  Google Scholar 

  129. Kurdziel KA, Shih JH, Apolo AB, Lindenberg L, Mena E, McKinney YY, et al. The kinetics and reproducibility of 18F-sodium fluoride for oncology using current PET camera technology. J Nucl Med 2012;53:1175‐84.

    Article  CAS  PubMed  Google Scholar 

  130. Joshi NV, Vesey AT, Williams MC, Shah ASV, Calvert PA, Craighead FHM, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: A prospective clinical trial. Lancet 2014;383:705‐13.

    Article  PubMed  Google Scholar 

  131. Kwiecinski J, Tzolos E, Adamson PD, Cadet S, Moss AJ, Joshi N, et al. Coronary 18F-sodium fluoride uptake predicts outcomes in patients with coronary artery disease. J Am Coll Cardiol 2020;75:3061‐74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Dweck MR, Jones C, Joshi NV, Fletcher AM, Richardson H, White A, et al. Assessment of valvular calcification and inflammation by positron emission tomography in patients with aortic stenosis. Circulation 2012;125:76‐86.

    Article  CAS  PubMed  Google Scholar 

  133. Dweck MR, Jenkins WSA, Vesey AT, Pringle MAH, Chin CWL, Malley TS, et al. 18F-sodium fluoride uptake is a marker of active calcification and disease progression in patients with aortic stenosis. Circ Cardiovasc Imaging 2014;7:371‐8.

    Article  PubMed  Google Scholar 

  134. Jenkins WSA, Vesey AT, Shah ASV, Pawade TA, Chin CWL, White AC, et al. Valvular (18)F-Fluoride and (18)F-fluorodeoxyglucose uptake predict disease progression and clinical outcome in patients with aortic stenosis. J Am Coll Cardiol 2015;66:1200‐1.

    Article  PubMed  Google Scholar 

  135. Cartlidge TRG, Doris MK, Sellers SL, Pawade TA, White AC, Pessotto R, et al. Detection and prediction of bioprosthetic aortic valve degeneration. J Am Coll Cardiol 2019;73:1107‐19.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Bucerius J, Hyafil F, Verberne HJ, Slart RHJA, Lindner O, Sciagra R, et al. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis. Eur J Nucl Med Mol Imaging 2016;43:780‐92.

    Article  PubMed  Google Scholar 

  137. Huet P, Burg S, Le Guludec D, Hyafil F, Buvat I. Variability and uncertainty of 18F-FDG PET imaging protocols for assessing inflammation in atherosclerosis: Suggestions for improvement. J Nucl Med 2015;56:552‐9.

    Article  CAS  PubMed  Google Scholar 

  138. Dweck MR, Chow MWL, Joshi NV, Williams MC, Jones C, Fletcher AM, et al. Coronary arterial 18F-sodium fluoride uptake: A novel marker of plaque biology. J Am Coll Cardiol 2012;59:1539‐48.

    Article  CAS  PubMed  Google Scholar 

  139. Pawade TA, Cartlidge TRG, Jenkins WSA, Adamson PD, Robson P, Lucatelli C, et al. Optimization and reproducibility of aortic valve 18F-fluoride positron emission tomography in patients with aortic stenosis. Circ Cardiovasc Imaging 2016;9:e005131.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, Fontana M, Gheysens O, Gillmore JD, Glaudemans AWJM, Hanna MA, Hazenberg BPC, Kristen AV, Kwong RY, Maurer MS, Merlini G, Miller EJ, Moon JC, Murthy VL, Quarta CC, Rapezzi C, Ruberg FL, Shah SJ, Slart RHJA, Verberne HJ, Bourque JM. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 1 of 2-evidence base and standardized methods of imaging. J Nucl Cardiol 2019.

  141. Treglia G, Glaudemans AWJM, Bertagna F, Hazenberg BPC, Erba PA, Giubbini R, et al. Diagnostic accuracy of bone scintigraphy in the assessment of cardiac transthyretin-related amyloidosis: A bivariate meta-analysis. Eur J Nucl Med Mol Imaging 2018;45:1945‐55.

    Article  CAS  PubMed  Google Scholar 

  142. Zhang LX, Martineau P, Finnerty V, Giraldeau G, Parent M-C, Harel F, Pelletier-Galarneau M. Comparison of 18F-sodium fluoride positron emission tomography imaging and 99mTc-pyrophosphate in cardiac amyloidosis. J Nucl Cardiol 2020.

  143. Kircher M, Ihne S, Brumberg J, Morbach C, Knop S, Kortüm KM, et al. Detection of cardiac amyloidosis with 18F-Florbetaben-PET/CT in comparison to echocardiography, cardiac MRI and DPD-scintigraphy. Eur J Nucl Med Mol Imaging 2019;46:1407‐16.

    Article  PubMed  Google Scholar 

  144. Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 1 of 2-evidence base and standardized methods of imaging. J Nucl Cardiol 2019;26:2065‐123.

    Article  PubMed  Google Scholar 

  145. Sperry BW, Burgett E, Bybee KA, McGhie AI, O’Keefe JH, Saeed IM, Thompson RC, Bateman TM. Technetium pyrophosphate nuclear scintigraphy for cardiac amyloidosis: Imaging at 1 vs 3 hours and planar vs SPECT/CT. J Nucl Cardiol 2020.

  146. Masri A, Bukhari S, Ahmad S, Nieves R, Eisele YS, Follansbee W, et al. Efficient 1-hour technetium-99 m pyrophosphate imaging protocol for the diagnosis of transthyretin cardiac amyloidosis. Circ Cardiovasc Imaging 2020;13:e010249.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, Fontana M, Gheysens O, Gillmore JD, Glaudemans AWJM, Hanna MA, Hazenberg BPC, Kristen AV, Kwong RY, Maurer MS, Merlini G, Miller EJ, Moon JC, Murthy VL, Quarta CC, Rapezzi C, Ruberg FL, Shah SJ, Slart RHJA, Verberne HJ, Bourque JM. Addendum to ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 1 of 2-evidence base and standardized methods of imaging. J Nucl Cardiol 2021.

  148. Régis C, Harel F, Martineau P, Grégoire J, Abikhzer G, Juneau D, et al. Tc-99m-pyrophosphate scintigraphy for the diagnosis of ATTR cardiac amyloidosis: Comparison of quantitative and semi-quantitative approaches. J Nucl Cardiol 2020;27:1808‐15.

    Article  PubMed  Google Scholar 

  149. Perugini E, Guidalotti PL, Salvi F, Cooke RMT, Pettinato C, Riva L, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol 2005;46:1076‐84.

    Article  PubMed  Google Scholar 

  150. Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 2016;133:2404‐12.

    Article  CAS  PubMed  Google Scholar 

  151. Bokhari S, Castaño A, Pozniakoff T, Deslisle S, Latif F, Maurer MS. (99m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging 2013;6:195‐201.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Schindler TH, Sharma M, Valenta I, Imperiale A, Dilsizian V. Potential cardiac amyloid PET/CT imaging targets for differentiating immunoglobulin light chain from transthyretin amyloidosis. Curr Cardiol Rep 2021;23:76.

    Article  PubMed  Google Scholar 

  153. Teague SD, Rissing S, Mahenthiran J, Achenbach S. Learning to interpret the extracardiac findings on coronary CT angiography examinations. J Cardiovasc Comput Tomogr 2012;6:232‐45.

    Article  PubMed  Google Scholar 

  154. Dorbala S, Cuddy S, Falk RH. How to image cardiac amyloidosis. JACC 2020;13:1368‐83.

    PubMed  Google Scholar 

  155. Seabold JE, Forstrom LA, Schauwecker DS, Brown ML, Datz FL, McAfee JG, et al. Procedure guideline for indium-111-leukocyte scintigraphy for suspected infection/inflammation. Society of Nuclear Medicine. J Nucl Med 1997;38:997‐1001.

    CAS  PubMed  Google Scholar 

  156. Datz FL, Seabold JE, Brown ML, Forstrom LA, Greenspan BS, McAfee JG, et al. Procedure guideline for technetium-99m-HMPAO-labeled leukocyte scintigraphy for suspected infection/inflammation. Society of Nuclear Medicine. J Nucl Med 1997;38:987‐90.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brett W. Sperry MD or Chi Liu PhD.

Ethics declarations

Disclosures

Dr. Sperry has received research support and speaking honoraria from Pfizer, and consults for BridgeBio and Alnylam. Dr. Robert Miller receives consulting fees and research support from Pfizer. Drs. Akin, Bravo, Chen, Dilsizian, Khor, Slart, Verberne have no disclosures to report. Dr. Bateman has research grants from Bracco, GE Healthcare, and Spectrum Dynamics, consults for GE Healthcare, receives royalties from SPECT and PET software products, and has equity interest in Cardiovascular Imaging Technologies. Dr. Miller has grant support from Eidos, Pfizer, and Alnylam, and consults for Eidos, Pfizer, and Roivant. Dr. Hyafil has consultancy and speaking fees from Blue Earth Diagnostics, Bracco Imaging, Curium, GE Healthcare, Naogen, and Pfizer. Dr. Slomka has research grant support from Siemens and the NIH (R01HL089765R01HL135557, R35HL161195) and software royalties from Cedars-Sinai. Dr. Liu reports research contract with Siemens Medical Solutions.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is being jointly published in the Journal of Nuclear Medicine (https://doi.org/10.2967/jnumed.122.264311) and the Journal of Nuclear Cardiology (https://doi.org/10.1007/s12350-022-02985-8).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sperry, B.W., Bateman, T.M., Akin, E.A. et al. Hot spot imaging in cardiovascular diseases: an information statement from SNMMI, ASNC, and EANM. J. Nucl. Cardiol. 30, 626–652 (2023). https://doi.org/10.1007/s12350-022-02985-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-022-02985-8

Keywords

Navigation