Skip to main content
Log in

The Existence of Arbitrary Multiple Nodal Solutions for a Class of Quasilinear Schrödinger Equations

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper is concerned to studying the quasilinear Schrödinger equation:

$$\begin{aligned} -\Delta u+V(x)u-\frac{\gamma }{2}\Delta (u^2)u=|u|^{p-2}u,~~x\in \mathbb {R}^{N}, \end{aligned}$$

where V(x) is a given potential, \(\gamma >0\) and either \(p\in (2,2^*),2^*=\frac{2N}{N-2}\) for \(N\geqslant 4\) or \(p\in (2,4)\) for \(N=3\). We establish the existence of arbitrary multiple nodal solutions for the above equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdolrazaghi, F., Razani, A.: A unique weak solution for a kind of coupled system of fractional Schrödinger equations. Opus. Math. 40, 313–322 (2020)

    Article  Google Scholar 

  2. Alves, C.O., Wang, Y., Shen, Y.: Soliton solutions for a class of quasilinear Schrödinger equations with a parameter. J. Differ. Equ. 259, 318–343 (2015)

    Article  Google Scholar 

  3. Bartsch, T., Liu, Z., Weth, T.: Nodal solutions of a p-Laplacian equation. Proc. Lond. Math. Soc. 91, 129–152 (2005)

    Article  MathSciNet  Google Scholar 

  4. Bass, F.G., Nasonov, N.N.: Nonlinear electromagnetic-spin waves. Phys. Rep. 189, 165–223 (1990)

    Article  Google Scholar 

  5. Choudhuri, D., Saoudi, K.: Existence of multiple solutions to Schrödinger–Poisson system in a nonlocal set up in \(\mathbb{R} ^3\). Z. Angew. Math. Phys. 73, 1–17 (2022)

    Article  Google Scholar 

  6. Colin, M., Jeanjean, L.: Solutions for a quasilinear Schrödinger equation: a dual approach. Nonlinear Anal. 56, 213–226 (2004)

    Article  MathSciNet  Google Scholar 

  7. Davydova, T.A., Fishchuk, A.I.: Upper hybrid nonlinear wave structures. Ukr. J. Phys. 40, 487 (1995)

    Google Scholar 

  8. Hasse, R.W.: A general method for the solution of nonlinear soliton and kink Schrödinger equations. Z. Phys. B. 37, 83–87 (1980)

    Article  MathSciNet  Google Scholar 

  9. Jing, Y., Liu, H.: Sign-changing solutions for a modified nonlinear Schrödinger equation in \(\mathbb{R} ^N\). Calc. Var. Partial Differ. Equ. 61, 144 (2022)

    Article  Google Scholar 

  10. Jing, Y., Liu, Z., Wang, Z.-Q.: Multiple solutions of a parameter-dependent quasilinear elliptic equation. Calc. Var. Partial Differ. Equ. 55, 1–26 (2016)

    Article  MathSciNet  Google Scholar 

  11. Kosevich, A.M., Ivanov, B.A., Kovalev, A.S.: Magnetic solitons. Phys. Rep. 194, 117–238 (1990)

    Article  Google Scholar 

  12. Kurihara, S.: Exact soliton solution for superfluid film dynamics. J. Phys. Soc. Jpn. 50, 3801–3805 (1981)

    Article  MathSciNet  Google Scholar 

  13. Liu, J., Wang, Z.-Q.: Soliton solutions for quasilinear Schrödinger equations I. Proc. Am. Math. Soc. 187, 441–448 (2003)

    Google Scholar 

  14. Liu, J.-Q., Wang, Z.-Q.: Multiple solutions for quasilinear elliptic equations with a finite potential well. J. Differ. Equ. 257, 2874–2899 (2014)

    Article  MathSciNet  Google Scholar 

  15. Liu, J.-Q., Wang, Y.-Q., Wang, Z.-Q.: Soliton solutions for quasilinear Schrödinger equations. II. J. Differ. Equ. 187, 473–493 (2003)

    Article  Google Scholar 

  16. Liu, J.-Q., Wang, Y.-Q., Wang, Z.-Q.: Quasilinear equations via elliptic regularization method. Adv. Nonlinear Stud. 13, 517–531 (2003)

    Article  MathSciNet  Google Scholar 

  17. Liu, J.-Q., Wang, Y.-Q., Wang, Z.-Q.: Solutions for quasilinear Schrödinger equations via the Nehari method. Commun. Partial Differ. Equ. 29, 879–901 (2004)

    Article  Google Scholar 

  18. Liu, X.-Q., Liu, J.-Q., Wang, Z.-Q.: Quasilinear elliptic equations via perturbation method. Proc. Am. Math. Soc. 141, 253–263 (2013)

    Article  MathSciNet  Google Scholar 

  19. Liu, J., Liu, X., Wang, Z.-Q.: Multiple sign-changing solutions for quasilinear elliptic equations via perturbation method. Commun. Partial Differ. Equ. 39, 2216–2239 (2014)

    Article  MathSciNet  Google Scholar 

  20. Liu, J., Liu, X., Wang, Z.-Q.: Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete Contin. Dyn. Syst. Ser. S. 14, 1779–1799 (2021)

    MathSciNet  Google Scholar 

  21. Makhankov, V.G., Fedyanin, V.K.: Non-linear effects in quasi-one-dimensional models of condensed matter theory. Phys. Rep. 104, 1–86 (1984)

    Article  MathSciNet  Google Scholar 

  22. Moussaoui, A., Saoudi, K.: Existence and location of nodal solutions for quasilinear convection-absorption Neumann problems. arXiv preprint arXiv:2304.00647

  23. Nakamura, A.: Damping and modification of exciton solitary waves. J. Phys. Soc. Jpn. 42, 1824–1835 (1977)

    Article  Google Scholar 

  24. Poppenberg, M., Schmitt, K., Wang, Z.-Q.: On the existence of soliton solutions to quasilinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 14, 329–344 (2002)

    Article  Google Scholar 

  25. Quispel, G.R.W., Capel, H.W.: Equation of motion for the Heisenberg spin chain. Phys. A 110, 41–80 (1982)

    Article  MathSciNet  Google Scholar 

  26. Razani, A., Cowan, C.: q-Laplace equation involving the gradient on general bounded and exterior domains. NoDEA Nonlinear Differ. Equ. Appl. 31 (2024)

  27. Razani, A., Gustavo Costa, S.A., Giovany Figueiredo, M.: A study on a class of weighted elliptic problems with indefinite nonlinearities. Appl. Anal. 24 (2023)

  28. Razani, A.: Non-existence of solution of Haraux–Weissler equation on a strictly starshped domain. Miskolc Math. Notes 24, 395–402 (2023)

    Article  MathSciNet  Google Scholar 

  29. Shen, Y., Wang, Y.: Soliton solutions for generalized quasilinear Schrödinger equations. Nonlinear Anal. 80, 194–201 (2013)

    Article  MathSciNet  Google Scholar 

  30. Wang, Y.: Solitary solutions for a class of quasilinear Schrödinger equations in \(\mathbb{R} ^3\). Z. Angew. Math. Phys. 67, 1–17 (2016)

    Article  Google Scholar 

  31. Wang, Y., Shen, Y.: Existence and asymptotic behavior of positive solutions for a class of quasilinear Schrödinger equations. Adv. Nonlinear Stud. 18, 131–150 (2018)

    Article  MathSciNet  Google Scholar 

  32. Wang, Y., Zou, W.: Bound states to critical quasilinear Schrödinger equations. NoDEA Nonlinear Differ. Equ. Appl. 19, 19–47 (2012)

    Article  Google Scholar 

  33. Wang, X., Brown, D.W., Lindenberg, K., West, B.J.: Alternative formulation of Davydov’s theory of energy transport in biomolecular systems. Phys. Rev. A 37, 3557–3566 (1998)

    Article  Google Scholar 

  34. Willem, M.: Minimax Theorems. Birkhäuser, Basel (1996)

    Book  Google Scholar 

  35. Yang, J., Wang, Y., Abdelgadir, A.A.: Soliton solutions for quasilinear Schrödinger equations. J. Math. Phys. 54 (2013)

  36. Zhang, X., Huang, C.: Asymptotic behavior of multiple solutions for quasilinear Schrödinger equations. Electron. J. Qual. Theory Differ. Equ. 64, 1–28 (2022)

    Google Scholar 

  37. Zhang, H., Liu, Z., Tang, C., Zhang, J.: Existence and multiplicity of sign-changing solutions for quasilinear Schrödinger equations with sub-cubic nonlinearity. J. Differ. Equ. 365, 199–234 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank excellent work in references.

Author information

Authors and Affiliations

Authors

Contributions

Kun Wang, Chen Huang wrote the main manuscript text, and Gao Jia revised the paper. All authors reviewed the manuscript.

Corresponding author

Correspondence to Chen Huang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Huang, C. & Jia, G. The Existence of Arbitrary Multiple Nodal Solutions for a Class of Quasilinear Schrödinger Equations. Qual. Theory Dyn. Syst. 23, 148 (2024). https://doi.org/10.1007/s12346-024-01010-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-024-01010-2

Keywords

Mathematics Subject Classification

Navigation