Skip to main content
Log in

Existence of multiple solutions to Schrödinger–Poisson system in a nonlocal set up in \(\mathbb {R}^3\)

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The aim of this work is to study the following system:

$$\begin{aligned} {\begin{matrix} (-\Delta )^su+\alpha \phi u&{}=\beta u^{-\gamma }+g(u)+h(x)~\text {in}~\mathbb {R}^3\\ u&{}>0~\text {in}~\mathbb {R}^3\\ (-\Delta )^s\phi &{}=u^2~\text {in}~\mathbb {R}^3. \end{matrix}} \end{aligned}$$

under the Berestycki–Lions type condition. Here \(\alpha , \beta >0\), \(0<s,\gamma <1\), \(g\in C(\mathbb {R},\mathbb {R})\), \(h\in L^2(\mathbb {R}^3)\). We will prove the existence of at least two solutions using the Ekeland’s variational principle, Mountain pass theorem and a Pohožaev type identity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azzollini, A.: Concentration and compactness in nonlinear Schrödinger–Poisson system with a general nonlinearity. J. Differ. Equ. 249(7), 1746–1763 (2010)

    Article  MathSciNet  Google Scholar 

  2. Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Schrödinger–Maxwell equations. J. Math. Anal. Appl. 345(1), 90–108 (2008)

    Article  MathSciNet  Google Scholar 

  3. Azzollini, A., d’Avenia, P., Pomponio, A.: On the Schrödinger–Maxwell equations under the effect of a general nonlinear term. Ann. Inst. Henri Poincaré Anal. Non Linéaire 27(2), 779–791 (2010)

  4. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Topol. Methods Nonlinear Anal. 11(2), 283–293 (1998)

    Article  MathSciNet  Google Scholar 

  5. Benci, V., Fortunato, D.: Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations. Rev. Math. Phys. 14(4), 409–420 (2002)

    Article  MathSciNet  Google Scholar 

  6. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)

    Article  MathSciNet  Google Scholar 

  7. Chen, S.J., Tang, C.L.: Multiple solutions for nonhomogeneous Schrödinger–Maxwell and Klein–Gordon–Maxwell equations on \(\mathbb{R}^3\). NoDEA Nonlinear Differ. Equ. Appl. 17(5), 559–574 (2010)

    Article  Google Scholar 

  8. Choudhuri, D.: Existence and Hölder regularity of infinitely many solutions to a \(p\)-Kirchhoff type problem involving a singular nonlinearity without the Ambrosetti–Rabinowitz (AR) condition. Z. Angew. Math. Phys. (Z.A.M.P.) 72, 36 (2021)

    Article  Google Scholar 

  9. D’Aprile, T., Mugnai, D.: Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations. Proc. R. Soc. Edinb. Sect. A 134(5), 893–906 (2004)

    Article  Google Scholar 

  10. d’Avenia, P.: Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations. Adv. Nonlinear Stud. 2(2), 177–192 (2002)

    Article  MathSciNet  Google Scholar 

  11. Ding, L., Li, L., Zhang, J.L.: Multiple solutions for nonhomogeneous Schrödinger–Poisson systems with the asymptotical nonlinearity in \(\mathbb{R}^3\). Taiwan. J. Math. 17(5), 1627–1650 (2013)

    Article  Google Scholar 

  12. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  Google Scholar 

  13. Fan, H.: Multiple positive solutions for Schrödinger–Poisson systems involving concave–convex nonlinearities. Electron. J. Differ. Equ. 2019(86), 1–19 (2019)

    Google Scholar 

  14. Ghosh, S.: An existence result for singular nonlocal fractional Kirchhoff–Schrödinger–Poisson system (2021). https://doi.org/10.1080/17476933.2021.1900137

  15. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28(10), 1633–1659 (1997)

    Article  MathSciNet  Google Scholar 

  16. Jiang, Y., Wang, Z., Zhou, H.S.: Multiple solutions for a nonhomogeneous Schrödinger–Maxwell system in \(\mathbb{R}^3\). Nonlinear Anal. 83, 50–57 (2013)

    Article  MathSciNet  Google Scholar 

  17. Khoutir, S., Chen, H.: Multiple nontrivial solutions for a nonhomogeneous Schrödinger–Poisson system in \(\mathbb{R}^3\). Electron. J. Qual. Theor. Differ. Equ. 2017(28), 1–17 (2017)

    Article  Google Scholar 

  18. Lan, Y., Tang, B., Hu, X.: Positive solutions of SchrÖdinger–Poisson systems with Hardy potential and indefinite nonlinearity. Electron. J. Differ. Equ. 2020(47), 1–10 (2020)

    MATH  Google Scholar 

  19. Oton, X.R., Serra, J.: The Pohozaev identity for the fractional Laplacian. Arch. Ration. Mech. Anal. 213, 587–628 (2014)

    Article  MathSciNet  Google Scholar 

  20. Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237(2), 655–674 (2006)

    Article  MathSciNet  Google Scholar 

  21. Salvatore, A.: Multiple solitary waves for a non-homogeneous Schrödinger–Maxwell system in \(\mathbb{R}^3\). Adv. Nonlinear Stud. 6(2), 157–169 (2006)

    Article  MathSciNet  Google Scholar 

  22. Saoudi, K., Ghosh, S., Choudhuri, D.: Multiplicity and Hölder regularity of solutions for a nonlocal elliptic PDE involving singularity. J. Math. Phys. 60, 101509 (2019)

    Article  MathSciNet  Google Scholar 

  23. Soni, A., Datta, S., Saoudi, K., Choudhuri, D.: Existence of solution for a system involving a singular-nonlocal operator, a singularity and a Radon measure. In: Complex Variable and Elliptic Equations (2020). https://doi.org/10.1080/17476933.2020.1849157

  24. Sun, J., Ma, S.: Ground state solutions for some Schrödinger–Poisson systems with periodic potentials. J. Differ. Equ. 260(3), 2119–2149 (2016)

    Article  Google Scholar 

  25. Teng, K.: Ground state solutions for the non-linear fractional Schrödinger–Poisson system. Appl. Anal. 98(11), 1959–1996 (2019)

    Article  MathSciNet  Google Scholar 

  26. Wang, L., Ma, S.: Multiple solutions for a nonhomogeneous Schrödinger–Poisson system with concave and convex nonlinearities. J. Appl. Anal. Comput. 9(2), 628–637 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Wang, L., Ma, S., Xu, N.: Multiple solutions for nonhomogeneous Schrödinger–Poisson equations with sign-changing potential. Acta Math. Sci. Ser. B (Engl. Ed.) 37(2), 555–572 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Willem, M.: Minimax theorem. In: Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Birkhäuser, Boston (1996)

  29. Xavier Ros-Oton. https://www.ub.edu/pde/xros/PhD-Course-Nonlocal-Ch1.pdf

  30. Yin, L.F., Wu, X.-P., Tang, C.-L.: Ground state solutions for an asymptotically 2-linear Schrödinger–Poisson system. Appl. Math. Lett. 87, 7–12 (2019)

    Article  MathSciNet  Google Scholar 

  31. Zhang, Q.: Existence and asymptotic behavior of positive solutions to p(x)-Laplacian equations with singular nonlinearities. J. Inequal. Appl. (2007). https://doi.org/10.1155/2007/19349

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, J.: On the Schrödinger–Poisson equations with a general nonlinearity in the critical growth. Nonlinear Anal. 75(18), 6391–6401 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author DC was supported financially for this research by the CSIR, India (25(0292)/18/EMR-II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel Saoudi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 4.2 guarantees the existence of a positive solution to (3.3) and Lemma 4.4 establishes that a solution to (1.1) is greater than or equal to the solution to (3.3).

Lemma 4.1

(Weak Comparison Principle) Let \(u, v\in X\). Suppose, \((-\Delta )^{s}v-\frac{\mu }{v^{\gamma }}\ge (-\Delta )^{s}u-\frac{\mu }{u^{\gamma }}\) weakly in \(\mathbb {R}^3\). Then \(v\ge u\) in \(\mathbb {R}^3.\)

The proof follows verbatim of the Lemma 3.1 in [22].

Lemma 4.2

Let \(\beta >0\). Then, the following problem

$$\begin{aligned}&(-\Delta )^{s}u+\alpha \phi _u u=\beta u^{-\gamma },~\text {in}~\mathbb {R}^3\nonumber \\&u>0,~\text {in}~\mathbb {R}^3 \end{aligned}$$
(4.1)

has a unique weak solution in \(H^s(\mathbb {R}^3)\). This solution is denoted by \(\underline{u}_{\beta }\), satisfies \(\underline{u}_{\beta }\ge \epsilon _{\beta } v_0\) a.e. in \(\Omega \), where \(\epsilon _{\beta }>0\) is a constant.

Proof

We follow the proof in [8]. Firstly, we note that an energy functional on \(H^s(\mathbb {R}^3)\) formally corresponding to (4.1) can be defined as follows.

$$\begin{aligned} \bar{E}(u)&=\frac{1}{2}[u]_2^2+\frac{\alpha }{4}\int \limits _{\mathbb {R}^3}\phi _u u^2\hbox {d}x-\frac{\beta }{1-\gamma }\int \limits _{\Omega }(u^+)^{1-\gamma }\hbox {d}x \end{aligned}$$
(4.2)

for \(u\in X\). By the Poincaré inequality, this functional is coercive and continuous on \(H^s(\mathbb {R}^3)\). It follows that \(\bar{E}\) possesses a global minimizer \(u_0\in H^s(\mathbb {R}^3)\). Clearly, \(u_0\ne 0\) since \(\bar{E}(0)=0>\bar{E}(\epsilon v_0)\) for sufficiently small \(\epsilon \) and some \(v_0>0\) in \(\mathbb {R}^3\).

Secondly, we have the decomposition \(u=u^+-u^-\). Thus if \(u_0\) is a global minimizer for \(\bar{E}\), then so is \(|u_0|\), by \(\bar{E}(|u_0|)\le \bar{E}(u_0)\). Clearly enough, the equality holds iff \(u_0^-=0\) a.e. in \(\mathbb {R}^3\). In other words we need to have \(u_0\ge 0\), i.e. \(u_0\in X^+\) where

$$\begin{aligned} X^+=\{u\in H^s(\mathbb {R}^3):u\ge 0~\text {a.e. in}~\mathbb {R}^3\} \end{aligned}$$

is the positive cone in \(H^s(\mathbb {R}^3)\).

Third, we will show that \(u_0\ge \epsilon v_0>0\) holds a.e. in \(\mathbb {R}^3\) for small enough \(\epsilon \). Observe that,

$$\begin{aligned} \begin{aligned} \frac{\mathrm{{d}}}{\hbox {d}t}\bar{E}(tv_0)|_{t=\epsilon }=&\epsilon [v_0]_2^2+\alpha \epsilon ^3\int \limits _{\mathbb {R}^3}\phi _u u^2\hbox {d}x-\beta \epsilon ^{-\gamma }\int \limits _{\Omega }v_0^{1-\gamma }\hbox {d}x<0 \end{aligned} \end{aligned}$$
(4.3)

whenever \(0<\epsilon \le \epsilon _{\beta }\) for some sufficiently small \(\epsilon _{\beta }\). We now show that \(u_0\ge \epsilon _{\beta }v_0\). On the contrary, suppose \(w=(\epsilon _{\beta }v_0-u_0)^+\) does not vanish identically in \(\mathbb {R}^3\). Denote

$$\begin{aligned} \mathbb {R}^3_+=\{x\in \mathbb {R}^3:w(x)>0\}. \end{aligned}$$

We will analyse the function \(\zeta (t)=E(u_0+tw)\) of \(t\ge 0\). This function is convex owing to its definition over \(X^+\) being convex. Further \(\zeta '(t)=\langle E'(u_0+tw),w \rangle \) is nonnegative and nondecreasing for \(t>0\). Consequently for \(0<t<1\) we have

$$\begin{aligned} {\begin{matrix} 0\le \zeta '(1)-\zeta '(t)&{}=\langle E'(u_0+w)-E'(u_0+tw),w\rangle \\ &{}=\int \limits _{\mathbb {R}_+}E'(u_0+w)\hbox {d}x-\zeta '(t)\\ &{}<0 \end{matrix}} \end{aligned}$$
(4.4)

by inequality (4.3) and \(\zeta '(t)\ge 0\) with \(\zeta '(t)\) being nondecreasing for every \(t>0\), which is a contradiction. Therefore \(w=0\) in \(\mathbb {R}\) and hence \(u_0\ge \epsilon _{\beta }v_0\) a.e. in \(\mathbb {R}\).

Finally, the functional E being strictly convex on \(X^+\), we conclude that \(u_0\) is the only critical point of E in \(X^+\) with the property \(\underset{V}{\text {ess}\inf }u_0>0\) for any compact subset \(V{\subset }\mathbb {R}\). Therefore we choose \(\underline{u}_{\beta }=u_0\) in the cutoff functional.

Remark 4.3

We will now conduct an apriori analysis on a solution (if it exists). Suppose u is a solution to (1.1), then we observe the following

  1. 1.

    \(E(u)=E(|u|)\). This implies that \(u^-=0\) a.e. in \(\mathbb {R}^3\).

  2. 2.

    A solution to (1.1) can be taken to be positive, i.e. \(u>0\) a.e. in \(\mathbb {R}^3\) owing to being driven by the singular term.

Thus without loss of generality, we assume that the solution is positive.

We have the following result.

Lemma 4.4

(Apriori analysis) Fix a \(\beta \in (0,\beta _0)\). Then a solution of (1.1), say \(u>0\), is such that \(u\ge \underline{u}_{\beta }\) a.e. in \(\mathbb {R}^3\).

Proof

Fix \(\beta \in (0,\beta _0)\) and let \(u\in H^s(\mathbb {R}^3)\) be a positive solution to the system in (1.1) and \(\underline{u}_{\beta }>0\) be a solution to (4.1). We will show that \(u\ge \underline{u}_{\beta }\) a.e. in \(\mathbb {R}^3\). Thus, we let \(\underline{\mathbb {R}}^3=\{x\in \mathbb {R}^3:u(x)<\underline{u}_{\beta }(x)\}\) and from the equation satisfied by u, \(\underline{u}_{\beta }\), we have

$$\begin{aligned} {\begin{matrix} 0\le &{}\int \limits _{\underline{\mathbb {R}}^3}\frac{|(\underline{u}_{\beta }-u)(x)-(\underline{u}_{\beta }-u)(y)|^2}{|x-y|^{3+2s}}\hbox {d}x\hbox {d}y\\ \le &{}\int \limits _{\underline{\mathbb {R}}^3}\frac{|(\underline{u}_{\beta }-u)(x)-(\underline{u}_{\beta }-u)(y)|^2}{|x-y|^{3+2s}}\hbox {d}x\hbox {d}y+\alpha \int \limits _{\underline{\mathbb {R}}^3}(\phi _{\underline{u}_{\beta }}\underline{u}_{\beta }-\phi _uu)(\underline{u}_{\beta }-u)\hbox {d}x\\ \le &{}\beta \int \limits _{\underline{\mathbb {R}}^3}(\underline{u}_{\beta }^{-\gamma }-u^{-\gamma })(\underline{u}_{\beta }-u)\hbox {d}x\\ \le &{} 0. \end{matrix}} \end{aligned}$$
(4.5)

Hence, from (4.5), we obtain \(u\ge \underline{u}_{\beta }\) a.e. in \(\mathbb {R}^3\). \(\square \)

We shall conclude the paper with the following observation.

Remark 4.5

$$\begin{aligned} {\begin{matrix} \lim \limits _{n\rightarrow +\infty }\int \limits _{\Omega }|u_n|^{-\gamma -1}uv\hbox {d}x=\int \limits _{\Omega }|u|^{-\gamma -1}uv\hbox {d}x~\text {for any}~v\in X_0. \end{matrix}} \end{aligned}$$
(4.6)

Indeed, let us denote the set \(A_n=\{x\in \Omega :u_n(x)=0\}\). Since \(|u_n|^{-\gamma } v\in L^1(\Omega )\), we have that the Lebesgue measure of \(A_n\) is zero, i.e. \(|A_n|=0\). Thus by the sub-additivity of the Lebesgue measure we have, \(|\bigcup A_n|=0\). Let \(x\in \Omega \setminus D\) such that \(u(x)=0\). Here \(|D|<\delta \)—obtained from the Egorov’s theorem—where u is a uniform limit of (a subsequence of) \(\{u_n\}\) in \(\Omega \). In order to achieve (4.6), we shall show that the Lebesgue measure \(|\{x\in \Omega \setminus D:~\text {as}~n\rightarrow \infty , u_n(x)\rightarrow 0\}|=0\). Further, define

$$\begin{aligned} A_{m,n}=\{x\in \Omega \setminus D:|u_n(x)|<\frac{1}{m}\}. \end{aligned}$$

Note that due to the uniform convergence, for a fixed n we have \(|A_{m,n}|\rightarrow 0\) as \(m\rightarrow \infty \). Now consider

$$\begin{aligned} \underset{m,n\in \mathbb {N}}{\bigcup }A_{m,n}=\underset{n\ge 1}{\bigcup }\underset{m\ge n}{\bigcap }A_{m,n}. \end{aligned}$$

Observe that, for a fixed n,

$$\begin{aligned} \left| \underset{m\ge n}{\bigcap }A_{m,n}\right| =\underset{m\rightarrow \infty }{\lim }A_{m,n}=0. \end{aligned}$$

The above argument is true for each fixed n and thus

$$\begin{aligned} \left| \underset{m,n\in \mathbb {N}}{\bigcup }A_{m,n}\right| =0. \end{aligned}$$

Therefore, \(|\{x\in \Omega \setminus D:~\text {as}~n\rightarrow \infty , u_n(x)\rightarrow 0\}|=0\). Hence the claim follows. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhuri, D., Saoudi, K. Existence of multiple solutions to Schrödinger–Poisson system in a nonlocal set up in \(\mathbb {R}^3\). Z. Angew. Math. Phys. 73, 33 (2022). https://doi.org/10.1007/s00033-021-01649-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01649-w

Keywords

Mathematics Subject Classification

Navigation