Skip to main content
Log in

Minimal-Speed Selection to a Lotka–Volterra Competition System with Local Versus Nonlocal Diffusions and Cubic Nonlinearity

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, the minimal-speed selection mechanism to a Lotka–Volterra type of model with local versus nonlocal diffusions and cubic nonlinearity is considered. By using comparison principle and upper-lower solution method, general criteria for both linear and nonlinear selection of the minimal wave speed are derived. Based on these results, several explicit conditions for determining the linear selection of the minimal wave speed are obtained via the constructions of various upper solutions. These conditions can help us to confirm that the species will spread with the speed of a linearised system and take an insight into thresholds for different model parameters. Moreover, it is found that the model with cubic nonlinearity causes a very different mechanism compared to the one caused by quadratic nonlinearity. For example, the linear selection can be realized when the diffusion strength is in an infinite interval for the model with cubic nonlinearity. Finally, it should be pointed out that concrete conditions for nonlinear selection are not obtained due to the failure of construction of a lower solution, and are left for further work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alhasanat, A., Ou, C.: On a conjecture raised by Yuzo Hosono. J. Dyn. Differ. Equ. 31, 287–304 (2019)

    Article  MathSciNet  Google Scholar 

  2. Alhasanat, A., Ou, C.: Minimal-speed selection of traveling waves to the Lotka–Volterra competition model. J. Differ. Equ. 266, 7357–7378 (2019)

    Article  MathSciNet  Google Scholar 

  3. Berestycki, H., Diekmann, O., Nagelkerke, C.J., Zegeling, P.A.: Can a species keep pace with a shifting climate? Bull. Math. Biol. 71, 399–429 (2009)

    Article  MathSciNet  Google Scholar 

  4. Chu, Y.-M., Jneid, M., Chaouk, A., Inc, M., Rezazadeh, H., Houwe, A.: Local time fractional reduced differential transform method for solving local time fractional telegraph equations. Fractals (2023)

  5. Du, L.-J., Li, W.-T., Wu, S.-L.: Propagation phenomena for a bistable Lotka–Volterra competition system with advection in a periodic habitat. Z. Angew. Math. Phys. 71, 11 (2022)

    Article  MathSciNet  Google Scholar 

  6. Fang, J., Zhao, X.-Q.: Traveling for monotone semiflow with weak compactness, SIAM. J. Math. Anal. 46, 3678–3704 (2014)

    Google Scholar 

  7. Gilpin, M.E., Ayala, F.J.: Global models of growth and competition. Proc. Natl. Acad. Sci. 70, 3590–3593 (1973)

    Article  Google Scholar 

  8. Guo, J.-S., Liang, X.: The minimal speed of traveling fronts for the Lotka–Volterra competition system. J. Dyn. Differ. Equ. 23, 353–363 (2011)

    Article  MathSciNet  Google Scholar 

  9. Hao, Y.-C., Zhang, G.-B.: The dynamics of traveling wavefronts for a nonlocal delay competition system with local vs. nonlocal diffusions. Commun. Nonlinear. Sci. Numer. Simulat. 110, 106381 (2022)

  10. Hou, X.-J., Wang, B., Zhang, Z.-C.: Mutual inclution in a nonlocal competitive LotkaVolterra system, Japan. J. Indust. Appl. Math. 31, 87–110 (2014)

    Article  Google Scholar 

  11. Huang, M.D., Wu, S.L., Zhao, X.Q.: The evolution of dispersal. J. Math. Biol. 47, 483–517 (2003)

    Article  MathSciNet  Google Scholar 

  12. Hutson, V., Martinez, S., Mischaikow, K., Vickers, G.T.: The evolution of dispersal. J. Math. Biol. 47, 483–517 (2003)

    Article  MathSciNet  Google Scholar 

  13. Ignat, L., Rossi, J.: A nonlocal convection–diffusion equation. J. Funct. Anal. 251, 1167–1189 (2007)

    Article  MathSciNet  Google Scholar 

  14. Iqbal, N., Wu, R., Mohammed, W.W.: Pattern formation induced by fractional cross-diffusion in a 3-species food chain model with harvesting. Math. Comput. Simul. 188, 102–119 (2021)

    Article  MathSciNet  Google Scholar 

  15. Kao, C.-Y., Lou, Y., Shen, W.-X.: Random dispersal vs. nonlocal dispersal. Discrete Contin. Dyn. Syst. 26, 551–596 (2010)

    Article  MathSciNet  Google Scholar 

  16. Kumar, D., Yildirim, A., Kabaar, M. K. A., Razazadeh, H. Samei, M. E.: Exploration of some novel solutions to a coupled Schrödinger-KdV equations in the interactions of capillary-gravity waves. Math. Sci. 1–13 (2022)

  17. Li, L., Sheng, W.-J., Wang, M.-X.: Systems with nonlocal vs. local diffusions and free boundaries. J. Math. Anal. Appl. 483, 123646 (2020)

    Article  MathSciNet  Google Scholar 

  18. Ma, M., Carretero-Gonźalez, R., Kevrekidis, P.G., Frantzeskakis, D.J., Malomed, B.A.: Controlling the transverse instability of dark solitons and nucleation of vortices by a potential barrier. Phys. Rev. A 82, 023621 (2010)

    Article  Google Scholar 

  19. Matsuda, H., Ogita, N., Sasaki, A., Sato, K.: Statistical mechanics of population: the lattice Lotka–Volterra model. Prog. Theor. Phy. 88, 1035–1049 (1992)

    Article  Google Scholar 

  20. Mohammed, W.W., Aly, E.S., Matouk, A.E.: An analytical study of the dynamic behavior of Lotka–Volterra based models of COVID-19. Results Phys. 26, 104432 (2021)

    Article  Google Scholar 

  21. Mohammed, W.W., Iqbal, N.: Impact of the same degenerate additive noise on a couple system of fractional space diffusion equations. Fractals 30, 2240033 (2022)

    Article  Google Scholar 

  22. Murray, J.: Mathematical Biology, 2nd edn. Springer-verlag, New York (1993)

    Book  Google Scholar 

  23. Pan, C., Wang, H., Ou, C.: Invasive speed for a competition–diffusion system with three species. Discrete Contin. Dyn. Syst. Ser. B 27, 6 (2022)

    Article  MathSciNet  Google Scholar 

  24. Pan, S.-X., Guo, L.: Invasion traveling wave solutions of a competitive system with dispersal. Bound. Value Probl. 120, 1–11 (2012)

    MathSciNet  Google Scholar 

  25. Pang, L.Y., Wu, S.L., Ruan, S.G.: Long time behaviors for a periodic Lotka–Volterra strong competition–diffusion system. Calc. Var. Part. Differ. Equ. 62, 99 (2023)

    Article  Google Scholar 

  26. Soave, N., Zilio, A.: Uniform bounds for strongly competing systems: the optimal Lipschitz case. Arch. Ration. Mech. Anal. 218, 647–697 (2015)

    Article  MathSciNet  Google Scholar 

  27. Tang, Y., Pan, C., Wang, H., Ouyang, Z.: Speed determinacy of travelling waves for a three-component lattice Lotka–Volterra competition system. J. Biol. Dynam. 16, 340–353 (2022)

    Article  MathSciNet  Google Scholar 

  28. Wang, J., Yu, Z.-X., Meng, Y.: Existence and stability of invasion traveling waves for a competition system with random vs. nonlocal dispersals. Int. J. Biomath. 12, 1950004 (2018)

    Article  MathSciNet  Google Scholar 

  29. Wang, J.-P., Wang, M.-X.: Free boundary problems with nonlocal and local diffusions I: Global solution. J. Math. Anal. Appl. 490, 123974 (2020)

    Article  MathSciNet  Google Scholar 

  30. Wang, J.-P., Wang, M.-X.: Free boundary problems with nonlocal and local diffusions II: spreading-vanishing and long-time behavior. Discrete Contin. Dyn. Syst. Ser. B 25, 4721–4736 (2020)

    MathSciNet  Google Scholar 

  31. Wang, H., Huang, Z., Ou, C.: Speed selection for the wavefronts of the lattice Lotka–Volterra competition system. J. Differ. Equ. 268, 3880–3902 (2020)

    Article  MathSciNet  Google Scholar 

  32. Wang, H., Ou, C.: Propagation speed of the bistable traveling wave to the Lotka–Volterra competition system in a periodic habitat. J. Nonlinear Sci. 30, 3129–3159 (2020)

    Article  MathSciNet  Google Scholar 

  33. Wang, H., Ou, C.: Propagation direction of the traveling wave for the Lotka–Volterra competitive lattice system. J. Dyn. Differ. Equ. 33, 1153–1174 (2021)

    Article  MathSciNet  Google Scholar 

  34. Wang, H., Wang, H., Ou, C.: Spreading dynamics of a Lotka–Volterra competition model in periodic habitats. J. Differ. Equ. 270, 664–693 (2021)

    Article  MathSciNet  Google Scholar 

  35. Wang, H., Pan, C., Ou, C.: Propagation dynamics of forced pulsating waves of a time periodic Lotka–Volterra competition system in a shifting habitat. J. Differ. Equ. 340, 359–385 (2022)

    Article  MathSciNet  Google Scholar 

  36. Wang, W.L., Kevrekidis, P. G., Carretero-Gonźalez, R., Frantzeskakis, D.J., Kaper, Tasso J., Ma, M.: Stabilization of ring dark solitons in Bose–Einstein condensates. Phys. Rev. A 92, 033611 (2015)

  37. Wu, S.L., Zhao, H.Q., Zhang, X., Hsu, C.H.: Propagation dynamics for a time-periodic epidemic model in discrete media. J. Differ. Equ. 374, 699–736 (2023)

    Article  Google Scholar 

  38. Xu, W.-B., Li, W.-T., Lin, G.: Nonlocal dispersal cooperative systems: acceleration propagation among species. J. Differ. Equ. 268, 1081–1105 (2020)

    Article  MathSciNet  Google Scholar 

  39. Yang, Z.-J., Zhang, G.-B.: Speed selection for a Lotka–Volterra competitive system with local vs. nonlocal diffusions. Qual. Theor. Dyn. Syst. 22, 43 (2023)

    Article  MathSciNet  Google Scholar 

  40. Younas, U., Ren, J.-L., Akinyemi, L., Rezazadeh, H.: On the multiple explicit exact solutions to the double-chain DNA dynamical system. Math. Methods Appl. Sci. 46, 6309–6323 (2023)

    Article  MathSciNet  Google Scholar 

  41. Yu, Z.-X., Xu, F., Zhang, W.-G.: Stability of invasion traveling waves for a competition system with nonlocal dispersals. Appl. Anal. 96, 1107–1125 (2017)

    Article  MathSciNet  Google Scholar 

  42. Zhang, G.-B., Dong, F.-D., Li, W.-T.: Uniqueness and stability of traveling waves for a three-species competition system with nonlocal dispersal. Discrete Contin. Dyn. Syst. Ser. B 24, 1511–1514 (2019)

    MathSciNet  Google Scholar 

  43. Zhang, G.-B., Ma, R.-Y., Li, X.-S.: Traveling waves for a Lotka–Volterra strong competition system with nonlocal dispersal. Discrete Contin. Dyn. Syst. Ser. B 23, 587–608 (2018)

    MathSciNet  Google Scholar 

  44. Zhang, G.-B., Zhao, X.-Q.: Propagation phenomena for a two-species Lotka–Volterra strong competition system with nonlocal dispersal. Calc. Var. Part. Differ. Equ. 59, 10 (2020)

    Article  MathSciNet  Google Scholar 

  45. Zhang, Q.-M., Han, Y.-Z., Horssen, W.-T., Ma, M.: Spreading speeds and monostable waves in a reaction–diffusion model with nonlinear competition. J. Math. Anal. Appl. 511, 126077 (2022)

    Article  MathSciNet  Google Scholar 

  46. Zhang, T.-T., Li, W.-X., Han, Y.-Z., Ma, M.: Global exponential stability of bistable traveling waves in a reaction-diffusion system with cubic nonlinearity. Commun. Pur. Appl. Anal. 22, 2215–2232 (2023)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Jiali Zhan and Hongyong Wang wrote the main manuscript, Jiding Liao and Hongyong Wang were responsible for conceptualization and methodology. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Jiding Liao or Hongyong Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by the Scientific Research Fund of Hunan Provincial Education Department Grant (23A0342), Natural Science Foundation of Hunan Province Grant (2021JJ30019).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, J., Liao, J. & Wang, H. Minimal-Speed Selection to a Lotka–Volterra Competition System with Local Versus Nonlocal Diffusions and Cubic Nonlinearity. Qual. Theory Dyn. Syst. 23, 152 (2024). https://doi.org/10.1007/s12346-024-01006-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-024-01006-y

Keywords

Mathematics Subject Classification

Navigation