Skip to main content
Log in

Long time behavior for a periodic Lotka–Volterra reaction–diffusion system with strong competition

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper is concerned with the long time behavior of bounded solutions to a two-species time-periodic Lotka–Volterra reaction–diffusion system with strong competition. It is well known that solutions of the Cauchy problem of this system with front-like initial values converge to a bistable periodic traveling front. One may ask naturally how solutions of such time-periodic systems with other types of initial data evolve as time increases. In this paper, by transforming the system into a cooperative system on \([\textbf{0},\textbf{1}]\), we first show that if the bounded initial value \(\varvec{\varphi }(x)\) has compact support and equals \(\textbf{1}\) for a sufficiently large x-level, then solutions converge to a pair of diverging periodic traveling fronts. As a by-product, we obtain a sufficient condition for solutions to spread to \(\textbf{1}\). We also prove that if the two species are initially absent from the right half-line \(x>0\) and the slower one dominates the faster one on \(x<0\), then solutions approach a propagating terrace, which means that several invasion speeds can be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bao, X., Wang, Z.-C.: Existence and stability of time periodic traveling waves for a periodic bistable Lotka–Volterra competition system. J. Differ. Equ. 255, 2402–2435 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Bao, X., Li, W.-T., Shen, W.: Traveling wave solutions of Lotka–Volterra competition systems with nonlocal dispersal in periodic habitats. J. Differ. Equ. 260, 8590–8637 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55, 949–1032 (2002)

    MathSciNet  MATH  Google Scholar 

  4. Berestycki, H., Hamel, F., Roques, L.: Analysis of the periodically fragmented environment model: II-biological invasions and pulsating traveling fronts. J. Math. Pures Appl. 84, 1101–1146 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Bo, W.-J., Lin, G., Ruan, S.: Traveling wave solutions for time periodic reaction–diffusion systems. Discrete Contin. Dyn. Syst. 38, 4329–4351 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Burns, K.C., Lester, P.J.: Competition and coexistence in model populations. In: Jorgensen, S.E., Fath, B. (eds.) Encycl. Ecol., pp. 701–707. Elsevier (2008)

    Google Scholar 

  7. Carrère, C.: Spreading speeds for a two-species competition–diffusion system. J. Differ. Equ. 264, 2133–2156 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Conley, C., Gardner, R.: An application of generalized Morse index to traveling wave solutions of a competitive reaction–diffusion model. Indiana Univ. Math. J. 33, 319–343 (1984)

    MathSciNet  MATH  Google Scholar 

  9. Ding, W., Matano, H.: Dynamics of time-periodic reaction–diffusion equations with compact initial support on \({\mathbb{R}} \). J. Math. Pures Appl. 131, 326–371 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Ding, W., Matano, H.: Dynamics of time-periodic reaction–diffusion equations with front-like initial data on \(\mathbb{R} \). SIAM. J. Math. Anal. 52, 2411–2462 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Ducrot, A., Giletti, T., Matano, H.: Existence and convergence to a propagating terrace in one dimensional reaction–diffusion equations. Trans. Am. Math. Soc. 366, 5541–5566 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Du, L.-J., Li, W.-T., Wang, J.-B.: Asymptotic behavior of traveling fronts and entire solutions for a periodic bistable competition–diffusion system. J. Differ. Equ. 265, 6210–6250 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Du, L.-J., Li, W.-T., Wu, S.-L.: Pulsating fronts and front-like entire solutions for a reaction–advection–diffusion competition model in a periodic habitat. J. Differ. Equ. 266, 8419–8458 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Du, L.-J., Li, W.-T., Wu, S.-L.: Propagation phenomena for a bistable Lotka–Volterra competition system with advection in a periodic habitat. Z. Angew. Math. Phys. 71, 1–27 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Du, Y., Matano, H.: Convergence and sharp thresholds for propagation in nonlinear diffusion problems. J. Eur. Math. Soc. 12, 279–312 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Du, Y., Wu, C.-H.: Classification of the spreading behaviors of a two-species diffusion–competition system with free boundaries. Calc. Var. Partial Differ. Equ. 61, 1–34 (2022)

    MathSciNet  MATH  Google Scholar 

  17. Fang, J., Wu, J.: Monotone traveling waves for delayed Lotka–Volterra competition systems. Discrete Contin. Dyn. Syst. 32, 3043–3058 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Fang, J., Zhao, X.-Q.: Bistable traveling waves for monotone semiflows with applications. J. Eur. Math. Soc. 17, 2243–2288 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Fang, J., Yu, X., Zhao, X.-Q.: Traveling waves and spreading speeds for time-space periodic monotone systems. J. Funct. Anal. 272, 4222–4262 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Fife, P., McLeod, J.: The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Ration. Mech. Anal. 65, 335–361 (1977)

    MathSciNet  MATH  Google Scholar 

  21. Gardner, R.: Existence and stability of traveling wave solutions of competition models: a degree theoretic approach. J. Differ. Equ. 44, 343–364 (1982)

    MATH  Google Scholar 

  22. Gourley, S., Ruan, S.: Convergence and traveling fronts in functional differential equations with nonlocal terms: a competition model. SIAM J. Math. Anal. 35, 806–822 (2003)

    MathSciNet  MATH  Google Scholar 

  23. Guo, J.-S., Wu, C.-H.: Wave propagation for a two-component lattice dynamical system arising in strong competition models. J. Differ. Equ. 250, 3504–3533 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Guo, J.-S., Wu, C.-H.: Traveling wave front for a two-component lattice dynamical system arising in competition models. J. Differ. Equ. 252, 4357–4391 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Hess, P.: Periodic-parabolic Boundary Value Problems and Positivity. Pitman Research Notes in Mathematics Series, vol. 247. Longman, New York (1991)

    Google Scholar 

  26. Hosono, Y.: The minimal speed of traveling fronts for a diffusive Lotka–Volterra competition model. Bull. Math. Biol. 60, 435–448 (1998)

    MATH  Google Scholar 

  27. Huang, J., Shen, W.: Speeds of spread and propagation of KPP models in time almost and space periodic media. SIAM J. Appl. Dyn. Syst. 8, 790–821 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Kan-on, Y.: Fisher wave fronts for the Lotka–Volterra competition model with diffusion. Nonlinear Anal. 28, 145–164 (1997)

    MathSciNet  MATH  Google Scholar 

  29. Kan-on, Y.: Parameter dependence of propagation speed of travelling waves for competition–diffusion equations. SIAM J. Math. Anal. 26, 340–363 (1995)

    MathSciNet  MATH  Google Scholar 

  30. Kanel, Ya..I..: Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory. Dokl. Akad. Nauk 132, 268–271 (1960)

    Google Scholar 

  31. Li, W.-T., Lin, G., Ruan, S.: Existence of travelling wave solutions in delayed reaction–diffusion systems with applications to diffusion–competition systems. Nonlinearity 19, 1253–1273 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Liang, X., Yi, Y., Zhao, X.-Q.: Spreading speeds and traveling waves for periodic evolution system. J. Differ. Equ. 231, 57–77 (2006)

    MathSciNet  MATH  Google Scholar 

  33. Lin, G., Li, W.-T.: Bistable wavefronts in a diffusive and competitive Lotka–Volterra type system with nonlocal delays. J. Differ. Equ. 244, 487–513 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Ma, M., Yue, J., Huang, Z., Ou, C.: Propagation dynamics of bistable traveling wave to a time-periodic Lotka–Volterra competition model: effect of seasonality. J. Dyn. Differ. Equ. (2022). https://doi.org/10.1007/s10884-022-10129-2

    Article  Google Scholar 

  35. Ma, Z., Wang, Z.-C.: The trichotomy of solutions and the description of threshold solutions for periodic parabolic equations in cylinders. J. Dyn. Differ. Equ. (2022). https://doi.org/10.1007/s10884-021-10124-z

    Article  Google Scholar 

  36. Poláčik, P.: Planar propagating terraces and the asymptotic one-dimensional symmetry of solutions of semilinear parabolic equations. SIAM J. Math. Anal. 49, 3716–3740 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Poláčik, P.: Propagating terraces and the dynamics of front-like solutions of reaction–diffusion equations on \(\mathbb{R} \). Mem. Am. Math. Soc. 264, 1–114 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Rawal, N., Shen, W., Zhang, A.: Spreading speeds and traveling waves of nonlocal monostable equations in time and space periodic habitats. Discrete Contin. Dyn. Syst. 35, 1609–1640 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Roquejoffre, J.-M.: Eventual monotonicity and convergence to traveling fronts for the solutions of parabolic equations in cylinders. Ann. Inst. H. Poincaré Anal. Non Linéaire 14, 499–552 (1997)

    MathSciNet  MATH  Google Scholar 

  40. Shen, W., Shen, Z.: Transition fronts in time heterogeneous and random media of ignition type. J. Differ. Equ. 262, 454–485 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Shen, W., Shen, Z.: Stability, uniqueness and recurrence of generalized traveling waves in time heterogeneous media of ignition type. Trans. Am. Math. Soc. 369, 2573–2613 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Wang, H., Wang, H., Ou, C.: Spreading dynamics of a Lotka–Volterra competition model in periodic habitats. J. Differ. Equ. 270, 664–693 (2021)

    MathSciNet  MATH  Google Scholar 

  43. Wang, H., Ou, C.: Propagation speed of the bistable traveling wave to the Lotka–Volterra competition system in a periodic habitat. J. Nonlinear Sci. 30, 3129–3159 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Wu, S.-L., Hsu, C.-H.: Periodic traveling fronts for partially degenerate reaction–diffusion systems with bistable and time-periodic nonlinearity. Adv. Nonlinear Anal. 9, 923–957 (2020)

    MathSciNet  MATH  Google Scholar 

  45. Wu, S.-L., Huang, M.-D.: Time periodic traveling waves for a periodic nonlocal dispersal model with delay. Proc. Am. Math. Soc. 148, 4405–4421 (2020)

    MathSciNet  MATH  Google Scholar 

  46. Yu, X., Zhao, X.-Q.: Propagation phenomena for a reaction–advection–diffusion competition model in a periodic habitat. J. Dyn. Differ. Equ. 29, 41–66 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Zhang, G.-B., Zhao, X.-Q.: Propagation phenomena for a two-species Lotka–Volterra strong competition system with nonlocal dispersal. Calc. Var. Partial Differ. Equ. 59, 1–34 (2020)

    MathSciNet  MATH  Google Scholar 

  48. Zhang, L., Wang, Z.-C., Zhao, X.-Q.: Propagation dynamics of a time periodic and delayed reaction–diffusion model without quasi-monotonicity. Trans. Am. Math. Soc. 372, 1751–1782 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Zhao, G., Ruan, S.: Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka–Volterra competition system with diffusion. J. Math. Pures Appl. 95, 627–671 (2011)

    MathSciNet  MATH  Google Scholar 

  50. Zhao, G., Ruan, S.: Time periodic traveling wave solutions for periodic advection–reaction–diffusion systems. J. Differ. Equ. 257, 1078–1147 (2014)

    MathSciNet  MATH  Google Scholar 

  51. Zhao, X.-Q.: Dynamical Systems in Population Biology. Springer, New York (2003)

    MATH  Google Scholar 

  52. Zlatos, A.: Sharp transition between extinction and propagation of reaction. J. Am. Math. Soc. 19, 251–263 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are very grateful to the anonymous referee for careful reading and helpful suggestions which led to an improvement of our original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Liang Wu.

Additional information

Communicated by P. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S.-L. Wu: Research was partially supported by the NSF of China (No. 12171381) and Natural Science Basic Research Program of Shaanxi (No. 2020JC-24).

S. Ruan: Research was partially supported by National Science Foundation (DMS-1853622 and DMS-2052648).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, L., Wu, SL. & Ruan, S. Long time behavior for a periodic Lotka–Volterra reaction–diffusion system with strong competition. Calc. Var. 62, 99 (2023). https://doi.org/10.1007/s00526-023-02436-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-023-02436-3

Mathematics Subject Classification

Navigation