Skip to main content
Log in

Propagation phenomena for a two-species Lotka–Volterra strong competition system with nonlocal dispersal

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper is concerned with the propagation phenomena for a two-species Lotka–Volterra strong competition system with nonlocal dispersal. We first establish the existence of bistable traveling waves by appealing to the theory of monotone semiflows. Then we use a dynamical systems approach to prove that such bistable traveling waves are asymptotically stable and unique modulo translation. Finally, we study the spreading properties of solutions for a class of initial conditions by the comparison arguments and the method of super- and subsolutions. It is shown that for initial conditions where both species u and v are initially absent from the right half-line \(x > 0\), and the species v dominates the species u around \(x=-\infty \) initially, if v spreads in absence of u slower than u in absence of v, then solutions of the initial value problem will approach a propagating terrace, which connects the unstable state (0, 0) to the stable state (1, 0), and then the stable state (1, 0) to the other stable state (0, 1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30, 33–76 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bates, P., Fife, P., Ren, X., Wang, X.: Traveling waves in a convolution model for phase transitions. Arch. Ration. Mech. Anal. 138, 105–136 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carr, J., Chmaj, A.: Uniqueness of travelling waves of nonlocal monostable equations. Proc. Am. Math. Soc. 132, 2433–2439 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carrére, C.: Spreading speeds for a two-species competition–diffusion system. J. Differ. Equ. 264, 2133–2156 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chasseigne, E., Chaves, M., Rossi, J.: Asymptotic behavior for nonlocal diffusion equations. J. Math. Pure Appl. 86, 271–291 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, X.: Existence, uniqueness and asymptotic stability of traveling waves in non-local evolution equations. Adv. Differ. Equ. 2, 125–160 (1997)

    MATH  Google Scholar 

  7. Chen, F.: Stability and uniqueness of traveling waves for system of nonlocal evolution equations with bistable nonlinearity. Discrete Contin. Dyn. Syst. 24, 659–673 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coville, J.: Travelling Waves in a Nonlocal Reaction Diffusion Equation with Ignition Nonlinearity. Ph.D. thesis, Universit Pierre et Marie Curie, Paris (2003)

  9. Coville, J., Dupaigne, L.: On a nonlocal reaction diffusion equation arising in population dynamics. Proc. R. Soc. Edinb. 137A, 1–29 (2007)

    MATH  Google Scholar 

  10. Coville, J.: Travelling fronts in asymmetric nonlocal reaction diffusion equation: the bistable and ignition case. Prpublication du CMM, Hal-00696208 (2012)

  11. Ducrot, A., Giletti, T., Matano, H.: Existence and convergence to a propagating terrace in one dimensional reaction–diffusion equations. Trans. Am. Math. Soc. 366, 5541–5566 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ermentrout, G., McLeod, J.: Existence and uniqueness of traveling waves for a neural network. Proc. R. Soc. Edin. 123A, 461–478 (1993)

    Article  MATH  Google Scholar 

  13. Fang, J., Zhao, X.-Q.: Traveling waves for monotone semiflows with weak compactness. SIAM J. Math. Anal. 46, 3678–3704 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fang, J., Zhao, X.-Q.: Bistable traveling waves for monotone semiflows with applications. J. Eur. Math. Soc. 17, 2243–2288 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fife, P., McLeod, J.: The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Ration. Mech. Anal. 65, 335–361 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fife, P.: Some nonclassical trends in parabolic-like evolutions. In: Kirkilionis, M., Krömker, S., Rannacher, R., Tomi, F. (eds.) Trends in Nonlinear Analysis, pp. 153–191. Springer, Berlin (2003)

  17. Garcia-Melian, J., Rossi, J.: On the principal eigenvalue of some nonlocal diffusion problems. J. Differ. Equ. 246, 21–38 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Girardin, L., Lam, K.-Y.: Invasion of open space by two competitors: spreading properties of monostable two-species competition–diffusion systems. Proc. Lond. Math. Soc. 119, 1279–1335 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo, J.-S., Wu, C.-H.: Traveling wave front for a two-component lattice dynamical system arising in competition models. J. Differ. Equ. 252, 4357–4391 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hetzer, G., Nguyen, T., Shen, W.: Coexistence and extinction in the Volterrra–Lotka competition model with nonlocal dispersal. Commun. Pure Appl. Anal. 11, 1699–1722 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hou, X., Wang, B., Zhang, Z.-C.: The mutual inclusion in a nonlocal competitive Lotka Volterra system. Jpn. J. Ind. Appl. Math. 31, 87–110 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hsu, S.-B., Wang, F.-B., Zhao, X.-Q.: Dynamics of a periodically pulsed bio-reactor model with a hydraulic storage zone. J. Dyn. Differ. Equ. 23, 817–842 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang, R., Mei, M., Wang, Y.: Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity. Discrete Contin. Dyn. Syst. 32, 3621–3649 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hutson, V., Martinez, S., Mischaikow, K., Vickers, G.T.: The evolution of dispersal. J. Math. Biol. 47, 483–517 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ignat, L., Rossi, J.: A nonlocal convection–diffusion equation. J. Funct. Anal. 251, 399–437 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jin, Y., Zhao, X.-Q.: Spatial dynamics of a periodic population model with dispersal. Nonlinearity 22, 1167–1189 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kan-On, Y.: Parameter dependence of propagation speed of travelling waves for competition–diffusion equations. SIAM J. Math. Anal. 26, 340–363 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kao, C., Lou, Y., Shen, W.: Random dispersal versus non-local dispersal. Discrete Contin. Dyn. Syst. 26, 551–596 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, W.-T., Zhang, L., Zhang, G.-B.: Invasion entire solutions in a competition system with nonlocal dispersal. Discrete Contin. Dyn. Syst. 35, 1531–1560 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, W.-T., Wang, J.-B., Zhao, X.-Q.: Spatial dynamics of a nonlocal dispersal population model in a shifting environment. J. Nonlinear Sci. 28, 1189–1219 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lv, G., Wang, X.-H.: Stability of traveling wave fronts for nonlocal delayed reaction diffusion systems. Z. Anal. Anwend. J. Anal. Appl. 33, 463–480 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Murray, J.: Mathematical Biology, 3rd edn. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  33. Pan, S., Lin, G.: Invasion traveling wave solutions of a competitive system with dispersal. Bound. Value Probl. 2012, 120 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rodriguez, N.: On an integro-differential model for pest control in a heterogeneous environment. J. Math. Biol. 70, 1177–1206 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schumacher, K.: Traveling-front solutions for integro-differential equations. I. J. Reine. Angew. Math. 316, 54–70 (1979)

    MATH  Google Scholar 

  36. Shen, W., Shen, Z.: Transition fronts in nonlocal equations with time heterogeneous ignition nonlinearity. Discrete Contin. Dyn. Syst. 37, 1013–1037 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tsai, J.-C.: Global exponential stability of traveling waves in monotone bistable systems. Discrete Contin. Dyn. Syst. 21, 601–623 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Weng, P., Zhao, X.-Q.: Spreading speed and traveling waves for a multi-type SIS epidemic model. J. Differ. Equ. 229, 270–296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xu, D., Zhao, X.-Q.: Bistable waves in an epidemic model. J. Dyn. Differ. Equ. 16, 679–707 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yagisita, H.: Existence and nonexistence of traveling waves for a nonlocal monostable equation. Publ. RIMS Kyoto Univ. 45, 925–953 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, F.-Y., Li, Y., Li, W.-T., Wang, Z.-C.: Traveling waves in a nonlocal dispersal Kermack–Mckendrick epidemic model. Discrete Contin. Dyn. Syst. Ser. B 18, 1969–1993 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Yu, X., Zhao, X.-Q.: A nonlocal spatial model for Lyme disease. J. Differ. Equ. 261, 340–372 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yu, Z.-X., Xu, F., Zhang, W.-G.: Stability of invasion traveling waves for a competition system with nonlocal dispersals. Appl. Anal. 96, 1107–1125 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, G.-B., Li, W.-T., Wang, Z.-C.: Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity. J. Differ. Equ. 252, 5096–5124 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, G.-B., Ma, R., Li, X.-S.: Traveling waves for a Lotka–Volterra strong competition system with nonlocal dispersal. Discrete Contin. Dyn. Syst. Ser. B 23, 587–608 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Zhang, G.-B., Dong, F.-D., Li, W.-T.: Uniqueness and stability of traveling waves for a three-species competition system with nonlocal dispersal. Discrete Contin. Dyn. Syst. Ser. B 24, 1511–1541 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Zhang, L., Li, B.: Traveling wave solutions in an integro-differential competition model. Discrete Contin. Dyn. Syst. Ser. B 17, 417–428 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhao, X.-Q.: Dynamical Systems in Population Biology, 2nd edn. Springer, New York (2017)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

G.-B. Zhang was supported by NSF of China (11861056), NSF of Gansu Province (18JR3RA093) and the postdoctoral fellowship at the Memorial University of Newfoundland, and X.-Q. Zhao was partially supported by the NSERC of Canada. We are also grateful to the anonymous referee for careful reading and valuable comments which led to improvements of our original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Qiang Zhao.

Additional information

Communicated by P. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, GB., Zhao, XQ. Propagation phenomena for a two-species Lotka–Volterra strong competition system with nonlocal dispersal. Calc. Var. 59, 10 (2020). https://doi.org/10.1007/s00526-019-1662-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1662-5

Mathematics Subject Classification

Navigation