Skip to main content
Log in

Dynamical Behavior and Wave Speed Perturbations in the (2 + 1) pKP Equation

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

The unidirectional propagation of long waves in certain nonlinear dispersive waves is explained by the (2 + 1) pKP equation, this equation admits infinite number of infinitesimals. We explored new Lie vectors thorough the commutative product properties. Using the Lie reduction stages and some assistant methods to solve the reduced ODEs, Exploiting a set of new solutions. Exploring a set of non-singular local multipliers; generating a set of local conservation laws for the studied equation. The nonlocally related (PDE) systems are found. Four nonlocally related systems are discussed reveal twenty-one interesting closed form solutions for this equation. We investigate new various solitons solutions as one soliton, many soliton waves move together, two and three Lump soliton solutions. Though three dimensions plots some selected solutions are plotted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ma, W.X., Zhou, Y.: Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 264, 2633–2659 (2018)

    Article  MATH  Google Scholar 

  2. Hirota, R.: Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  3. Zeng, X., Yong, X.: A new mapping method and its applications to nonlinear partial differential equations. Phys. Lett. A 372(44), 6602–6607 (2008)

    Article  MATH  Google Scholar 

  4. Inan, I.E., Ugurlu, Y., Bulut, H.: Auto-Bنcklund transformation for some nonlinear partial differential equation. Optik 127(22), 10780–10785 (2016)

    Article  Google Scholar 

  5. Guan, X., Liu, W., Zhou, Q., Biswas, A.: Darboux transformation and analytic solutions for a generalized super-NLS-mKdV equation. Nonlinear Dyn. 98(2), 1491–1500 (2019)

    Article  Google Scholar 

  6. Izergin, A.G., Korepin, V.E.: The inverse scattering method approach to the quantum Shabat-Mikhailov model. Commun. Math. Phys. 79(3), 303–316 (1981)

    Article  Google Scholar 

  7. Tang, Y.: Pfaffian solutions and extended Pfaffian solutions to (3 + 1)-dimensional Jimbo–Miwa equation. Appl. Math. Modell 37(10–11), 6631–6638 (2013)

    Article  MATH  Google Scholar 

  8. Kaur, L., Wazwaz, A.M.: Painlevé analysis and invariant solutions of generalized fifth-order nonlinear integrable equation. Nonlinear Dyn. 94(4), 2469–2477 (2018)

    Article  MATH  Google Scholar 

  9. Kumar, D., Seadawy, A.R., Joardar, A.K.: Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology. Chin. J. Phys. 56(1), 75–85 (2018)

    Article  Google Scholar 

  10. Ma, W.X., Abdeljabbar, A., Asaad, M.G.: Wronskian and Grammian solutions to a (3 + 1)-dimensional generalized KP equation. Appl. Math. Comput. 217(24), 10016–10023 (2011)

    MATH  Google Scholar 

  11. Kumar, D., Seadawy, A.R., Haque, M.R.: Multiple soliton solutions of the nonlinear partial differential equations describing the wave propagation in non- linear low–pass electrical transmission lines. Chaos Solitons Fractals 115, 62–76 (2018)

    Article  MATH  Google Scholar 

  12. Kumar, D., Kaplan, M.: Application of the modified Kudryashov method to the generalized Schrodinger–Boussinesq equations. Opt. Quantum Electr. 50(9), 329 (2018)

    Article  Google Scholar 

  13. Geng, J.S., Zhang, H.Q.: Solitary wave solutions, lump solutions and interactional solutions to the (2 + 1)-dimensional potential Kadomstev–Petviashvili equation. Mod. Phys. Lett. B 34(04), 2050055 (2020)

    Article  Google Scholar 

  14. Lü, J., Bilige, S.: The study of lump solution and interaction phenomenon to (2 + 1)-dimensional potential Kadomstev–Petviashvili equation. Anal. Math. Phys. 9(3), 1497–1509 (2019)

    Article  MATH  Google Scholar 

  15. Kumar, D., Joardar, A.K., Hoque, A., Paul, G.C.: Investigation of dynamics of nematicons in liquid crystals by extended sinh-Gordon equation expansion method. Opt. Quantum Electr. 51(7), 212 (2019)

    Article  Google Scholar 

  16. Kumar, D., Hosseini, K., Samadani, F.: The sine-Gordon expansion method to look for the traveling wave solutions of the Tzitzéica type equations in nonlinear optics. Optik 149, 439–446 (2017)

    Article  Google Scholar 

  17. Kumar, D., Manafian, J., Hawlader, F., Ranjbaran, A.: New closed form soliton and other solutions of the Kundu–Eckhaus equation via the extended sinh–Gordon equation expansion method. Optik 160, 159–167 (2018)

    Article  Google Scholar 

  18. Gupta, R.K., Bansal, A.: Painlevé analysis, Lie symmetries and invariant solutions of potential Kadomstev–Petviashvili equation with time dependent coefficients. Appl. Math. Comput. 219(10), 5290–5302 (2013)

    MATH  Google Scholar 

  19. Satsuma, J.: Hirota bilinear method for nonlinear evolution equations. In: Direct and Inverse Methods in Nonlinear Evolution Equations, pp. 171–222. Springer, Berlin (2003)

    Chapter  MATH  Google Scholar 

  20. Guan, X., Liu, W., Zhou, Q., Biswas, A.: Darboux transformation and analytic solutions for a generalized super-NLS-mKdV equation. Nonlinear Dyn. 98(2), 1491–1500 (2019)

    Article  Google Scholar 

  21. Inan, I.E., Ugurlu, Y., Bulut, H.: Auto-Bäcklund transformation for some nonlinear partial differential equation. Optik 127(22), 10780–10785 (2016)

    Article  Google Scholar 

  22. Peng, W.Q., Tian, S.F., Zhang, T.T.: Analysis on lump, lumpoff and rogue waves with predictability to the (2 + 1)-dimensional B-type Kadomtsev–Petviashvili equation. Phys. Lett. A 382(38), 2701–2708 (2018)

    Article  MATH  Google Scholar 

  23. Wang, M., Tian, B., Qu, Q.X., Du, X.X., Zhang, C.R., Zhang, Z.: Lump, lumpoff and rogue waves for a (2 + 1)-dimensional reduced Yu-Toda-Sasa-Fukuyama equation in a lattice or liquid. Eur. Phys. J. Plus 134(11), 578 (2019)

    Article  Google Scholar 

  24. Kumar, D., Hosseini, K., Samadani, F.: The sine-Gordon expansion method to look for the traveling wave solutions of the Tzitzéica type equations in nonlinear optics. Optik 149, 439–446 (2017)

    Article  Google Scholar 

  25. Osman, M.S., Machado, J.A.: The dynamical behavior of mixed-type soliton solutions described by (2 + 1)-dimensional Bogoyavlensky–Konopelchenko equa- tion with variable coefficients. J. Electromagn. Waves Appl 32(11), 1457–1464 (2018)

    Article  Google Scholar 

  26. Yang, X.F., Deng, Z.C., Wei, Y.A.: Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application. Adv Differ Equ 117 (2015). (2015)

  27. Seoud, A.E., Enas, Y., Samah, M., Mabrouk, Abdul-Majid, W. “The nonlocal potential transformation method and solitary wave solutions for higher dimensions in shallow water waves.“Waves in Random and Complex Media:1–15. (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed R. Ali.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, WX., Seoud, E.Y.A.E., Ali, M.R. et al. Dynamical Behavior and Wave Speed Perturbations in the (2 + 1) pKP Equation. Qual. Theory Dyn. Syst. 22, 2 (2023). https://doi.org/10.1007/s12346-022-00683-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00683-x

Keywords

Navigation