Skip to main content
Log in

Bifurcation of Periodic Orbits of a Three-Dimensional Piecewise Smooth System

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

We consider a three-dimensional piecewise smooth system having an invariant surface and a closed orbit of multiplicity k on the invariant surface. By using bifurcation techniques and analyzing the number of solutions of bifurcation equations, we study certain bifurcation phenomena near the multiple k closed orbit and obtain some conditions for the existence of periodic orbits bifurcated from it. Moreover, our partial analytical results are demonstrated by some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carmona, V., Fernandez-Garcia, S., Freire, E.: Periodic orbits for perturbations of piecewise linear systems. J. Differ. Equ. 250, 2244–2266 (2011)

    Article  MathSciNet  Google Scholar 

  2. Carmona, V., Fernandez-Garcia, S., Freire, E.: Periodic orbits and invariant cones in three-dimensional piecewise linear systems. Discrete Continuous Dyn. Syst. Ser. A 35, 59–72 (2015)

    Article  MathSciNet  Google Scholar 

  3. Chow, S.N., Hale, J.K.: Methods of Bifurcation Theory. Springer, New York (1982)

    Book  Google Scholar 

  4. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise Smooth Dynamical Systems, Theory and Applications. Springer, London (2008)

    MATH  Google Scholar 

  5. Du, Z., Li, Y., Zhang, W.: Bifurcation of periodic orbits in a class of planar Filippov systems. Nonlinear Anal. 69, 3610–3628 (2008)

    Article  MathSciNet  Google Scholar 

  6. Fillppov, A.F.: Differential Equation with Discontinuous Right-Hand Sides. Kluwer Academic, Dordrecht (1988)

    Book  Google Scholar 

  7. Han, M.: Bifurcation of periodic orbits for three dimensional system. Acta Math. Appl. Sin. 18(4), 528–537 (1995). (in Chinese)

    MathSciNet  MATH  Google Scholar 

  8. Han, M.: Theory of Periodic Solutions and Bifurcation of Dynamical Systems. Science Publishing House, Beijing (2002). (in Chinese)

    Google Scholar 

  9. Han, M.: Bifurcation Theory of Limit Cycles. Science Press, Beijing (2013)

    Google Scholar 

  10. Hale, J.K.: Ordinary Differential Equations. Robert E. Krieger Publishing Co, New York (1980)

    MATH  Google Scholar 

  11. Kunze, M.: Non-Smooth Dynamical Systems, Theory and Applications. Springer, Berlin (2000)

    Book  Google Scholar 

  12. Liberzon, D.: Switching in Systems and Control. Birkhäuser, Boston (2003)

    Book  Google Scholar 

  13. Li, C., Ma, Z., Zhou, Y.: Periodic orbits in 3-dimensional systems and pplication to a perturbed Volterra system. J. Differ. Equ. 260, 2750–2762 (2016)

    Article  Google Scholar 

  14. Li, H., Ma, L., Zhu, W.: Chaotic behavior and subharmonic bifurcations for the Duffing-van Der Pol oscillator. J. Nonlinear Model. Anal. 1(2), 237–250 (2019)

    Google Scholar 

  15. Liang, F., Han, M.: Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems. Chaos Solitons Fractals 45, 454–464 (2012)

    Article  MathSciNet  Google Scholar 

  16. Liu, X., Han, M.: Bifurcation of periodic orbits of a three-dimensional system. Chin. Ann. Math. 26B(2), 253–274 (2005)

    Article  MathSciNet  Google Scholar 

  17. Liu, X., Han, M.: Bifurcation of limit cycles by perturbing piecewise Haniltionian systens. Int. J. Bifurc. Chaos Appl. Sci. Eng. 5, 1–12 (2010)

    Google Scholar 

  18. Llibre, J., Ponce, E., Ros, J.: Algebraic determination of limit cycles in a family of three-dimensional piecewise linear differential systems. Nonlinear Anal. 74, 6712–6727 (2011)

    Article  MathSciNet  Google Scholar 

  19. Llibre, J., Teruel, A.E.: Introduction to the Qualitative Theory of Differential Systems. Birkhäuser, Spain (2014)

    Book  Google Scholar 

  20. Perko, L.M.: Multiple limit cycle bifurcation surfaces and global families of multiple limit cycles. J. Differ. Equ. 122, 89–113 (1995)

    Article  MathSciNet  Google Scholar 

  21. Tian, H., Han, M.: Bifurcation of periodic orbits by perturbing high-dimensional piecewise smooth integrable systems. J. Differ. Equ. 263, 7448–7474 (2017)

    Article  MathSciNet  Google Scholar 

  22. Xiong, Y., Han, M.: Limit cycle bifurcations in a class of perturbed piecewise smooth systems. Appl. Math. Comput. 242, 47–64 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Yang, J., Han, M., Huang, W.: On Hopf bifurcation of piecewise planar Hamiltonian systems. J. Differ. Equ. 26B(250), 1026–1051 (2011)

    Article  MathSciNet  Google Scholar 

  24. Yu, P., Han, M., Bai, Y.: Dynamics and bifurcation study on an extended Lorenz system. J. Nonlinear Model. Anal. 1(1), 107–128 (2019)

    Google Scholar 

  25. Zhang, J., Feng, B.: Geometric Theory and Bifurcation Problems in Ordinary Differetial Equations. Science Publishing House, Beijing (1980). (in Chinese)

    Google Scholar 

  26. Zhang, Z., Ding, T., Huang, W., Dong, Z.: Qualitative Theory of Differetial Equations, Translations of Mathematical Monographs. American Mathematical Society, Providence, Rl (1992)

    Google Scholar 

  27. Zhao, A., Li, M., Han, M.: The Basic Theory of Differential Equation. Science Publishing House, Beijing (2011). (in Chinese)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for their valuable suggestions which helped to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoan Han.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by National Nature Science Foundation of China (Grant Nos. 11431008, 11771296).

Appendix

Appendix

The proof of Lemma 1

Transformation (2.4) can be rewritten as

$$\begin{aligned} {\left\{ \begin{array}{ll} \varvec{x}=\varvec{u}(\theta )+\varvec{z}(\theta )h_1 \equiv \varvec{\varphi } (\theta , h_1),\\ y=h_2, \end{array}\right. } \end{aligned}$$
(5.1)

where \(\varvec{z}(\theta )= (-v_2(\theta ),v_1(\theta ))^\top \), and

$$\begin{aligned} \ v_i(\theta )= {\left\{ \begin{array}{ll} v^+_i(\theta ), ~~~~0 \le \theta \le T_1, \\ v^-_i(\theta ), ~~~~T_1 < \theta \le T, \end{array}\right. } \ \ \ i=1,2. \end{aligned}$$

It is straightforward that (2.4) is continuous, one-to-one and periodic in \(\theta \) if and only if the map \(\varphi :(\theta ,h_1)\mapsto (x_1,x_2)\) is continuous, one-to-one and periodic in \(\theta \). Firstly, the continuity and periodicity are obvious. Secondly, for one-to-one property, we introduce two sets

$$\begin{aligned} G_1= & {} \{\varvec{\varphi } (\theta , h_1)| \ 0\le \theta \le T_1, |h_1|<\varepsilon _0\},\\ G_2= & {} \{\varvec{\varphi } (\theta , h_1)|\ T_1< \theta \le T, |h_1|<\varepsilon _0\}, \end{aligned}$$

where \(\varepsilon _0\) is a small positive constant. From (2.4), for \(0\le \theta \le T_1\)

$$\begin{aligned} \varvec{\varphi }(\theta ,h_1)= \begin{pmatrix} u_1^+(\theta ) \\ u_2^+(\theta ) \end{pmatrix} + \begin{pmatrix} -v_2^+(\theta ) \\ v_1^+(\theta ) \end{pmatrix} h_1\equiv \varvec{\varphi }^+(\theta ,h_1). \end{aligned}$$

It follows from the above equation that

$$\begin{aligned} \det \left. {\frac{\partial \varvec{\varphi }^+}{\partial (\theta ,h_1)}}\right| _{h_1=0}&=\left| \begin{array}{cc} (u^+_1)'(\theta ) &{} -v^+_2(\theta ) \\ (u^+_2)'(\theta ) &{} v^+_1(\theta ) \end{array}\right| \\&=(u_1^+)'(\theta )v_1^+(\theta )+(u_2^+)' (\theta )v_2^+(\theta )\\&=|\varvec{f}(\varvec{u}^+(\theta ))|>0. \end{aligned}$$

Thus \(\varvec{\varphi }:\{(\theta ,h_1)| \ 0\le \theta \le T_1, |h_1|<\varepsilon _0\}\mapsto G_1\) is one-to-one. Similarly, \(\varvec{\varphi }:\{(\theta ,h_1)| \ T_1<\theta \le T, |h_1|<\varepsilon _0\}\mapsto G_2\) is also one-to-one.

By condition (2.3), the function \(\varvec{\varphi }(\theta ,h_1)\) is continuous at \(\theta =0\), \(T_1\), T, satisfying \(\varvec{\varphi }(0,h_1)=\varvec{\varphi }(T,h_1)\), and the union \(G_1\cup G_2\) forms a neighborhood of the periodic orbit L. Therefore,

$$\begin{aligned} \varvec{\varphi }:\{(\theta ,h_1)| \ 0\le \theta \le T, |h_1|<\varepsilon _0\}\mapsto G_1\cup G_2 \end{aligned}$$

is an one-one transformation. This completes the proof of Lemma 1. \(\square \)

The proof of Lemma 2

For \(0\le \theta \le T_1\) or \(T_1<\theta \le T\), applying Theorem 1.4 of chapter two of reference [8] or the Theorem 1.2. of chapter VI in Ref. [10], the transformation of (2.4) transforms system (2.1) into a system with \(\theta , h\) as follows

$$\begin{aligned} \dot{\theta }&=1+\tilde{f}_1(\theta ,\varvec{h})+\varvec{H}(\theta ,\varvec{h}) \begin{pmatrix} \varvec{P}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h},\varepsilon ) \\ Q(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h},\varepsilon ) \end{pmatrix}\varepsilon ,\end{aligned}$$
(5.2)
$$\begin{aligned} \dot{\varvec{h}}&=\varvec{A}(\theta )\varvec{h}+\varvec{f}_2(\theta ,\varvec{h})+\varvec{B}(\theta ,\varvec{h}) \begin{pmatrix} P(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h},\varepsilon ) \\ Q(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h},\varepsilon ) \end{pmatrix}\varepsilon , \end{aligned}$$
(5.3)

where

$$\begin{aligned} \varvec{U}(\theta )&=\left( \begin{array}{c} \varvec{u}(\theta ) \\ 0 \end{array}\right) , ~~~~~~~\varvec{V}(\theta )=\left( \begin{array}{c} \varvec{v}(\theta ) \\ 0 \end{array}\right) , ~~~~~~~\tilde{\varvec{x}}=\left( \begin{array}{c} \varvec{x} \\ y \end{array}\right) ,\nonumber \\ \varvec{H}(\theta ,\varvec{h})&=[|\varvec{U}'(\theta )|+\varvec{V}^\top (\theta ) \varvec{Z}^\prime (\theta ) \varvec{h}]^{-1}\varvec{V}^\top (\theta ),\nonumber \\ \varvec{A}(\theta )&={\varvec{Z}^\top (\theta )}[{-\varvec{Z}^\prime (\theta )} +{\tilde{\varvec{f}}_{\tilde{\varvec{x}}}} (\varvec{U}(\theta ))\varvec{Z}(\theta )],\nonumber \\ \tilde{f}_1(\theta ,\varvec{h})&= \varvec{H}(\theta ,\varvec{h})[\tilde{\varvec{f}}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h})-\tilde{\varvec{f}}(\varvec{U}(\theta )) -\varvec{Z}^\prime (\theta ) \varvec{h}],\nonumber \\ \varvec{B}(\theta ,\varvec{h})&={\varvec{Z}^\top (\theta )}[I-\varvec{Z}^\prime (\theta )\varvec{h} \varvec{H}(\theta ,\varvec{h})],\nonumber \\ \varvec{f}_2(\theta ,\varvec{h})&= {-\varvec{Z}^\top (\theta )}{\varvec{Z}^\prime (\theta )}\varvec{h}\tilde{f}_1(\theta ,\varvec{h})\nonumber \\&\quad +{\varvec{Z}^\top (\theta )}[\tilde{\varvec{f}}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h}) -\tilde{\varvec{f}}(\varvec{U}(\theta ))-{\tilde{\varvec{f}}_ {\tilde{\varvec{x}}}}(\varvec{U}(\theta ))\varvec{Z}(\theta )\varvec{h}],\nonumber \\ \tilde{\varvec{f}}(\tilde{\varvec{x}})&= \begin{pmatrix} \varvec{f}(\varvec{x})+y\varvec{f}_1(\varvec{x},y) \\ yg(\varvec{x},y) \end{pmatrix},~~~~ \varvec{A}(\theta )= {\left\{ \begin{array}{ll} \varvec{A}^+(\theta ), ~~~~~~0 \le \theta \le T_1, \\ \varvec{A}^-(\theta ), ~~~~~~T_1 < \theta \le T. \end{array}\right. } \end{aligned}$$
(5.4)

Since \( {\varvec{Z}^\top (\theta )}\varvec{Z}^\prime (\theta )=\mathbf{0}\), one has

$$\begin{aligned} \begin{aligned} \varvec{B}(\theta ,\varvec{h}) =&\varvec{Z}^\top (\theta ),\\ \varvec{f}_2(\theta ,\varvec{h}) =&{\varvec{Z}^\top (\theta )}[\tilde{\varvec{f}}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h}) -\tilde{\varvec{f}}(\varvec{U}(\theta ))-{\tilde{\varvec{f}}_ {\tilde{x}}} (\varvec{U}(\theta ))\varvec{Z}(\theta )\varvec{h}],\\ \varvec{A}(\theta ) =&{\varvec{Z}^\top (\theta )}{\tilde{\varvec{f}}_{\tilde{\varvec{x}}}} (\varvec{U}(\theta ))\varvec{Z}(\theta )= \begin{pmatrix} a(\theta ) &{} {\varvec{z}^\top (\theta )}f_1(\varvec{u}(\theta ),0) \\ 0 &{} g(\varvec{u}(\theta ),0) \end{pmatrix}. \end{aligned} \end{aligned}$$

By direct computation and Taylor Theorem, we get

$$\begin{aligned} \tilde{f}_1(\theta ,\varvec{h})= & {} \frac{1}{|\varvec{u}^\prime (\theta )|}({\varvec{v}^\top (\theta )}\varvec{f}_{\varvec{x}}(\varvec{u}(\theta )) \varvec{z}(\theta )\\&-\varvec{v}^\top (\theta )\varvec{z}^\prime (\theta ),\varvec{v}^\top (\theta )\varvec{f}_1(\varvec{u}(\theta ),0)){\varvec{h}}+O(|\varvec{h}|^2). \end{aligned}$$

Then we obtain (2.5) from (5.2).

For obtaining the expansion of \(\varvec{f}_2(\theta ,\varvec{h})\), we set

$$\begin{aligned} \varvec{f}_2(\theta ,\varvec{h})= \begin{pmatrix} f_2^{(1)}(\theta ,\varvec{h}) \\ f_2^{(2)}(\theta ,\varvec{h}) \end{pmatrix}, ~~~ \tilde{\varvec{f}}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h})= \begin{pmatrix} \tilde{\varvec{f}}^{(1)}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h})) \\ \tilde{f}^{(2)}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h}) \end{pmatrix}. \end{aligned}$$

Then using of (5.4) we have

$$\begin{aligned} \varvec{Z}^\top (\theta )\tilde{\varvec{f}}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h})&= \begin{pmatrix} \varvec{z}^\top &{} 0 \\ \mathbf{0} &{} 1 \end{pmatrix} \begin{pmatrix} \tilde{\varvec{f}}^{(1)}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h}) \\ \tilde{f}^{(2)}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h}) \end{pmatrix}\nonumber \\&=\begin{pmatrix} \varvec{z}^\top \tilde{\varvec{f}}^{(1)}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h}) \\ \tilde{f}^{(2)}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h}) \end{pmatrix}. \end{aligned}$$
(5.5)

Note that

$$\begin{aligned} \varvec{f}_2(\theta ,0)=\varvec{0}~,~~~\frac{\partial \varvec{f}_2(\theta ,0)}{\partial \varvec{h}}=\varvec{0}. \end{aligned}$$

We can use Taylor Theorem to get

$$\begin{aligned} f_2^{(i)}(\theta ,\varvec{h}) = \frac{1 }{2}\varvec{h}^\top \frac{\partial ^2 f_2^{(i)}(\theta ,\varvec{0})}{\partial \varvec{h}^2}\varvec{h}+O(|\varvec{h}|^3),~~~~i=1,2, \end{aligned}$$
(5.6)

and in light of (5.5) and (5.6) we have

$$\begin{aligned} f_2^{(1)}(\theta ,\varvec{h})= \frac{1 }{2}\varvec{h}^\top \frac{\partial ^2 }{\partial \varvec{h}^2}[\varvec{z}^\top (\theta )\tilde{\varvec{f}}^{(1)}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h}]\big |_{\varvec{h}=\varvec{0}}\varvec{h}+O(|\varvec{h}|^3). \end{aligned}$$
(5.7)

Then using of (5.6) we can write the first component of \(\varvec{f}_2(\theta ,\varvec{h})\) as

$$\begin{aligned} f_2^{(1)}(\theta ,\varvec{h})&= \frac{1 }{2}\frac{\partial ^2 f_2^{(1)}(\theta ,\varvec{0})}{\partial h_1{^2}}h_1^{2}+\frac{\partial ^2 f_2^{(1)}(\theta ,\varvec{0})}{\partial h_1\partial h_2}h_1h_2+\frac{1 }{2}\frac{\partial ^2 f_2^{(1)}(\theta ,\varvec{0})}{\partial h_2{^2}}h_2{^2}+O(|\varvec{h}|^3). \end{aligned}$$
(5.8)

Set

$$\begin{aligned} \tilde{\varvec{f}}^{(1)}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h})= \begin{pmatrix} \tilde{f}_{1}^{(1)}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h}) \\ \tilde{f}_{2}^{(1)}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h}) \end{pmatrix}. \end{aligned}$$

Then the first component in (5.5) can be written as

$$\begin{aligned} \varvec{z}^\top \tilde{\varvec{f}}^{(1)}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h})&= -v_2(\theta )\tilde{f}_{1}^{(1)}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h})\\&\quad + v_1(\theta )\tilde{f}_{2}^{(1)}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h}). \end{aligned}$$

Based on above analysis, we are going to compute the right of Eq. (5.8). Firstly,

$$\begin{aligned} \frac{\partial ^2 f_2^{(1)}(\theta ,\varvec{h})}{\partial h_1{^2}}&= -v_2(\theta )\frac{\partial ^2 }{\partial h_1{^2}}\tilde{f}_{1}^{(1)}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h}) + v_1(\theta )\frac{\partial ^2 }{\partial h_1{^2}}\tilde{f}_{2}^{(1)}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h}). \end{aligned}$$
(5.9)

First of all, we compute \(\frac{\partial ^2 }{\partial h_1{^2}}\tilde{f}_{1}^{(1)}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h})\) in (5.9). Using of (5.4), we have

$$\begin{aligned} \frac{\partial ^2 }{\partial h_1{^2}}\tilde{f}_{1}^{(1)}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h})&= \frac{\partial ^2 }{\partial h_1{^2}}[f_{01}(\varvec{u}(\theta )+\varvec{z}(\theta )h_1)+h_2f_{11}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h})]\nonumber \\&= \frac{\partial ^2 }{\partial h_1{^2}}f_{01}(\varvec{u}(\theta )+\varvec{z}(\theta )h_1)+h_2\frac{\partial ^2 }{\partial h_1{^2}}f_{11}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h}). \end{aligned}$$
(5.10)

Transformation (2.4) can be rewritten as

$$\begin{aligned} {\left\{ \begin{array}{ll} x_1=u_1(\theta )-v_2(\theta )h_1,\\ x_2=u_2(\theta )+v_1(\theta )h_1,\\ y=h_2, \end{array}\right. } \end{aligned}$$

hence

$$\begin{aligned} \frac{\partial x_1}{\partial h_1}=-v_2(\theta ),~~ \frac{\partial x_2}{\partial h_1}=v_1(\theta ),~~\frac{\partial y}{\partial h_2}=1, \frac{\partial x_1}{\partial h_2}=\frac{\partial x_2}{\partial h_2}=\frac{\partial y}{\partial h_1}=0. \end{aligned}$$

Firstly, we calculate the first item on the right of (5.10). Because of

$$\begin{aligned}&\frac{\partial }{\partial h_1}f_{01}(\varvec{u}(\theta )+\varvec{z}(\theta )h_1)\\&\quad = \frac{\partial }{\partial x_1}f_{01}(\varvec{u}(\theta )+\varvec{z}(\theta )h_1)\frac{\partial x_1}{\partial h_1}+\frac{\partial }{\partial x_2}f_{01}(\varvec{u}(\theta )+\varvec{z}(\theta )h_1)\frac{\partial x_2}{\partial h_1}\\&\quad = -v_2(\theta )\frac{\partial }{\partial x_1}f_{01}(\varvec{u}(\theta )+\varvec{z}(\theta )h_1)+v_1(\theta )\frac{\partial }{\partial x_2}f_{01}(\varvec{u}(\theta )+\varvec{z}(\theta )h_1), \end{aligned}$$

we have

$$\begin{aligned}&\frac{\partial ^2}{\partial h_1^{2}}f_{01}(\varvec{u}(\theta )+\varvec{z}(\theta )h_1)\\&\quad = \frac{\partial }{\partial h_1} \left( \frac{\partial }{\partial h_1}f_{01}(\varvec{u}(\theta )+\varvec{z}(\theta )h_1)\right) \\&\quad =\frac{\partial }{\partial x_1} \left( \frac{\partial }{\partial h_1}f_{01}(\varvec{u}(\theta )+\varvec{z}(\theta )h_1)\right) \frac{\partial x_1}{\partial h_1} +\frac{\partial }{\partial x_2} \left( \frac{\partial }{\partial h_1}f_{01}(\varvec{u}(\theta )+\varvec{z}(\theta )h_1)\right) \frac{\partial x_2}{\partial h_1}\\&\quad = -v_2(\theta )\frac{\partial }{\partial x_1} \left( \frac{\partial }{\partial h_1}f_{01}(\varvec{u}(\theta )+\varvec{z}(\theta )h_1)\right) +v_1(\theta )\frac{\partial }{\partial x_2} \left( \frac{\partial }{\partial h_1}f_{01}(\varvec{u}(\theta )+\varvec{z}(\theta )h_1)\right) \\&\quad = v_2^{2}(\theta )\frac{\partial ^2}{\partial x_1^{2}}f_{01}(\varvec{u}(\theta )+\varvec{z}(\theta )h_1) -2v_1(\theta )v_2(\theta )\frac{\partial ^2 }{\partial x_1x_2}f_{01}(\varvec{u}(\theta )+\varvec{z}(\theta )h_1)\\&\qquad +v_1^{2}(\theta )\frac{\partial ^2 }{\partial x_2^{2}}f_{01}(\varvec{u}(\theta )+\varvec{z}(\theta )h_1). \end{aligned}$$

In light of similar analysis, we can obtain second coefficients on the right of (5.10). Namely,

$$\begin{aligned} \frac{\partial ^2 }{\partial h_1{^2}}f_{11}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h})&= v_2^{2}(\theta )\frac{\partial ^2}{\partial x_1^{2}}f_{11}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h})\\&\quad -2v_1(\theta )v_2(\theta )\frac{\partial ^2}{\partial x_1x_2}f_{11}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h})\\&\quad +v_1^{2}(\theta )\frac{\partial ^2}{\partial x_2^{2}}f_{11}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h}). \end{aligned}$$

Therefore, for \(\varvec{h}=\varvec{0}\), the left of the formula (5.10) is equal to

$$\begin{aligned} \frac{\partial ^2 }{\partial h_1{^2}}\tilde{f}_{1}^{(1)}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h})\big |_{\varvec{h}=\varvec{0}}&= \frac{\partial ^2 }{\partial h_1{^2}}f_{01}(\varvec{u}(\theta )+\varvec{z}(\theta )h_1)\big |_{\varvec{h}=\varvec{0}}\\&=\varvec{z}^\top ({\theta })\begin{pmatrix} \frac{\partial ^2 f_{01}(\varvec{u}(\theta ))}{\partial x_1^2} &{} \frac{\partial ^2 f_{01}(\varvec{u}(\theta ))}{\partial x_1 \partial x_2} \\ \frac{\partial ^2 f_{01}(\varvec{u}(\theta ))}{\partial x_2 \partial x_1} &{} \frac{\partial ^2 f_{01}(\varvec{u}(\theta ))}{\partial x_2^2} \end{pmatrix}\varvec{z}(\theta ). \end{aligned}$$

Analogous to \(\frac{\partial ^2 }{\partial h_1{^2}}\tilde{f}_{1}^{(1)}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h})\big |_{\varvec{h}=\varvec{0}}\), for \(\varvec{h}=\varvec{0}\) we deduce second coefficients on the right of (5.9)

$$\begin{aligned} \frac{\partial ^2 }{\partial h_1{^2}}\tilde{f}_{2}^{(1)}(\varvec{U}(\theta )+\varvec{Z}(\theta )\varvec{h})\big |_{\varvec{h}=\varvec{0}} =\varvec{z}^\top ({\theta }) \begin{pmatrix} \frac{\partial ^2 f_{02}(\varvec{u}(\theta ))}{\partial x_1^2} &{} \frac{\partial ^2 f_{02}(\varvec{u}(\theta ))}{\partial x_1 \partial x_2} \\ \frac{\partial ^2 f_{02}(\varvec{u}(\theta ))}{\partial x_2 \partial x_1} &{} \frac{\partial ^2 f_{02}(\varvec{u}(\theta ))}{\partial x_2^2} \end{pmatrix}\varvec{z}(\theta ). \end{aligned}$$

We can write \(\frac{\partial ^2 f_2^{(1)}(\theta ,\varvec{0})}{\partial h_1{^2}}\) in (5.8) as \(-v_2(\theta )\varvec{z}^\top (\theta )f^{\prime \prime }_{01}(\varvec{u}(\theta ))\varvec{z}(\theta ) +v_1(\theta )\varvec{z}^\top (\theta ) f^{\prime \prime }_{02}(\varvec{u}(\theta ))\varvec{z}(\theta )\).

Similar argument as \(\frac{\partial ^2 f_2^{(1)}(\theta ,\varvec{h})}{\partial h_1{^2}}\) in (5.8), we can get

$$\begin{aligned} \begin{aligned} \frac{\partial ^2 f_2^{(1)}(\theta ,\varvec{0})}{\partial h_1\partial h_2} =\varvec{z}^\top (\theta )\varvec{f}_{1\varvec{x}} (\varvec{u}(\theta ),\varvec{0})\varvec{z}(\theta ),~~~~ \frac{\partial ^2 f_2^{(1)}(\theta ,\varvec{0})}{\partial h_2{^2}} =2\varvec{z}^\top (\theta )\varvec{f}_{1y}(\varvec{u}(\theta ),\varvec{0}), \end{aligned} \end{aligned}$$

and the expanded formular of \( f_2^{(2)}(\theta ,\varvec{h})\). Accordingly, it follows that

$$\begin{aligned} \varvec{f}_2(\theta ,\varvec{h})= \begin{pmatrix} \frac{1}{2}g_1(\theta )h^2_1+g_2(\theta )h_1h_2+\frac{1}{2}g_3(\theta )h^2_2+O(|\varvec{h}|^3) \\ g_{\varvec{x}}(\varvec{u}(\theta ),0)\varvec{z}(\theta )h_1h_2+g_y(\varvec{u}(\theta ),0)h^2_2+O(|h_2||\varvec{h}|^2) \end{pmatrix}. \end{aligned}$$

Hence, from (5.3) we obtain (2.6). The proof of Lemma  2 is completed. \(\square \)

The proof of Lemma 3

From the assumption that

$$\begin{aligned} (h^+_1(\theta ,m_1,m_2,\varepsilon ),h^+_2(\theta ,m_1,m_2,\varepsilon )),~~ 0 \le \theta \le T_1, \end{aligned}$$

is a solution of system (2.8) satisfying

$$\begin{aligned} (h^+_1(0,m_1,m_2,\varepsilon ),h^+_2(0,m_1,m_2,\varepsilon ))=(m_1,m_2), \end{aligned}$$

we have expansions below

$$\begin{aligned} \begin{aligned} h^+_1(\theta ,m_1,m_2,\varepsilon )&=A^+_1(\theta )m_1+A^+_2(\theta )m_2+A^+_3(\theta )\varepsilon \\&\quad +\,A^+_4(\theta )m^2_1+A^+_5(\theta )m_1m_2+A^+_6(\theta )m^2_2\\&\quad +\,A^+_7(\theta )m_1\varepsilon +A^+_8(\theta )m_2\varepsilon +A^+_9(\theta )\varepsilon ^2+O(|m_1,m_2,\varepsilon |^3),\\ h^+_2(\theta ,m_1,m_2,\varepsilon )&=B^+_1(\theta )m_2+B^+_2(\theta )\varepsilon +B^+_3(\theta )m_1m_2+B^+_4(\theta )m_1\varepsilon +B^+_5(\theta )m^2_2\\&\quad +\,B^+_6(\theta )m_2\varepsilon +B^+_7(\theta )\varepsilon ^2+O(|m_2,\varepsilon ||m_1,m_2,\varepsilon |^2), \end{aligned}\nonumber \\ \end{aligned}$$
(5.11)

where

$$\begin{aligned} A^+_1(0)= & {} 1,~~~B^+_1(0)=1,~~~A^+_i(0)=0,~~~B^+_j(0)=0,~~~~~i=2,\ldots ,9,~~~\\ j= & {} 2,\ldots ,7. \end{aligned}$$

The expressions of \(A^{+}_i\) and \(B^{+}_j\)\((i=1,\ldots ,9,j=1,\ldots ,7)\) are similar to the expressions of \(A_i\) and \(B_j\)\((i=1,\ldots ,9,j=1,\ldots ,7)\) in [16], namely,

$$\begin{aligned} B_1^+(\theta )&=e^{\int ^{\theta }_0b_1^+(s)ds}=e^{\int ^{\theta }_0g^+(\varvec{u}^+(s),0))ds},\nonumber \\ B_2^+(\theta )&=e^{\int ^{\theta }_0b_1^+(s)ds}{\int ^{\theta }_0e^{\int ^{s}_0g^+(\varvec{u}^+(\xi ),0) d\xi } Q^+(\varvec{u}^+(s),0,0)ds},\nonumber \\ A_1^+(\theta )&=e^{\int ^{\theta }_0a^+(s)ds} =exp\left( \int ^{\theta }_0\mathrm {tr}\varvec{f}^+_{\varvec{x}}(\varvec{u}^+(s))ds\right) |\varvec{f}^+(\varvec{u}^+(0))| /|\varvec{f}^+(\varvec{u}^+(\theta ))|\nonumber \\ A_2^+(\theta )&=e^{\int ^{\theta }_0a^+(s)ds}{\int ^{\theta }_0e^{-\int ^{s}_0a^+(\xi )d\xi } a_1^+(s)B_1^+(s)ds},\nonumber \\&=A_1^+(\theta )\int ^{\theta }_0 e^{\int ^{s}_0[g^+(\varvec{u}^+(\xi ),0) -\mathrm {tr}\varvec{f}^+_x(\varvec{u}^+(\xi ))]d\xi }\varvec{f}^+(\varvec{u}^+(s))\nonumber \\&\quad \wedge \varvec{f}^+_1(\varvec{u}^+(s),0)ds/|\varvec{f}^+(\varvec{u}^+(\theta ))|,\nonumber \\ A_3^+(\theta )&=A_1^+(\theta ){\int ^{\theta }_0e^{-\int ^{s}_0 a^+(\xi )d\xi }(a_1^+(s)B_2^+(s)+a_2^+(s))ds},\nonumber \\ A_4^+(\theta )&=A_1^+(\theta )\int ^{\theta }_0\tilde{a}_5^+(s)A_1^+(s)ds,\nonumber \\ B_3^+(\theta )&=B_1^+(\theta ){\int ^{\theta }_0\tilde{b}_5^+(s)A_1^+(s)ds},\nonumber \\ B_4^+(\theta )&=B_1^+(\theta ){\int ^{\theta }_0[\tilde{b}_3^+(s)A_1^+(s)+\tilde{b}_5^+(s) B_2^+(s)A_1^+(s)]e^{-\int ^{s}_0g^+(\varvec{u}^+(\xi ),0))d\xi } ds},\nonumber \\ B_5^+(\theta )&=B_1^+(\theta ){\int ^{\theta }_0[\tilde{b}_5^+(s) B_1^+(s)A_2^+(s)+\tilde{b}_6^+(s)(B_1^+(s))^2]e^{-\int ^{s}_0g^+(\varvec{u}^+(\xi ),0))d\xi }ds},\nonumber \\ B_6^+(\theta )&=B_1^+(\theta )\int ^{\theta }_0[\tilde{b}_3^+(s) A_2^+(s)+\tilde{b}_4^+(s)B_1^+(s)+\tilde{b}_5^+(s)(B_1^+(s)A_3^+(s)\nonumber \\&\quad +B_2^+(s)A_2^+(s))+2\tilde{b}_6^+(s)B_1^+(s)B_2^+(s)]e^{-\int ^{s}_0g^+(\varvec{u}^+(\xi ),0))d\xi }ds,\nonumber \\ B_7^+(\theta )&=B_1^+(\theta )\int ^{\theta }_0[\tilde{b}_3^+(s)A_3^+(s) +\tilde{b}_4^+(s)B_2^+(s)+\tilde{b}_5^+(s)B_2^+(s)A_3^+(s)\nonumber \\&\quad +\tilde{b}_6^+(s)(B_2^+(s))^2+\tilde{b}_7^+(s)]e^{-\int ^{s}_0g^+(\varvec{u}^+(\xi ),0))d\xi }ds,\nonumber \\ A_5^+(\theta )&=A_1^+(\theta )\int ^{\theta }_0[a_1^+(s)B_3^+(s) +2\tilde{a}_5^+(s)A_1^+(s)A_2^+(s)+\tilde{a}_6^+(s)A_1^+(s)B_1^+(s)] \nonumber \\&\quad \cdot e^{-\int ^{s}_0\mathrm {tr}\varvec{f}^+_{\varvec{x}}(\varvec{u}^+(\xi ))d\xi )}|\varvec{f}^+(\varvec{u}^+(s)))|/|\varvec{f}^+(\varvec{u}^+(0))|ds,\nonumber \\ A_6^+(\theta )&=A_1^+(\theta )\int ^{\theta }_0[a_1^+(s)B_5^+(s) +\tilde{a}_5^+(s)(A_2^+(s))^2\nonumber \\&\quad +\tilde{a}_6^+(s)A_2^+(s)B_1^+(s)+\tilde{a}_7^+(s) (B_1^+(s))^2]\nonumber \\&\quad \cdot e^{-\int ^{s}_0\mathrm {tr}\varvec{f}^+_{\varvec{x}}(\varvec{u}^+(\xi ))d\xi )}| \varvec{f}^+(\varvec{u}^+(s)))|/|\varvec{f}^+(\varvec{u}^+(0))|ds,\nonumber \\ A_7^+(\theta )&=A_1^+(\theta )\int ^{\theta }_0[a_1^+(s)B_4^+(s) +\tilde{a}_3^+(s)A_1^+(s)+2\tilde{a}_5^+(s)A_1^+(s)A_3^+(s)\nonumber \\&\quad +\tilde{a}_6^+(s)A_1^+(s)B_2^+(s)] \cdot e^{-\int ^{s}_0\mathrm {tr}\varvec{f}^+_{\varvec{x}}(\varvec{u}^+(\xi ))d\xi )}|\varvec{f}^+(\varvec{u}^+(s)))|/|\varvec{f}^+(\varvec{u}^+(0))|ds,\nonumber \\ A_8^+(\theta )&=A_1^+(\theta )\int ^{\theta }_0[a_1^+(s)B_6^+(s) +\tilde{a}_3^+(s)A_2^+(s)+\tilde{a}_4^+(s)B_1^+(s)\nonumber \\&\quad +2\tilde{a}_5^+(s)A_2^+(s)A_3^+(s)+\tilde{a}_6^+(s)(A_3^+(s)B_1^+(s)\nonumber \\&\quad +A_2^+(s)B_2^+(s))+2\tilde{a}_7^+(s)B_1^+(s)B_2^+(s)] (A_1^+(s))^{-1}ds,\nonumber \\ A_9^+(\theta )&=A_1^+(\theta )\int ^{\theta }_0[a_1^+(s)B_7^+(s) +\tilde{a}_3^+(s)A_3^+(s)+\tilde{a}_4^+(s)B_2^+(s)+\tilde{a}_5^+(s)(A_3^+(s))^2\nonumber \\&\quad +\tilde{a}_6^+(s)A_3^+(s)B_2^+(s)+\tilde{a}_7^+(s)(B_2^+(s))^2+\tilde{a}_8^+(s)](A_1^+(s))^{-1}ds. \end{aligned}$$
(5.12)

Analogously, for \(T_1 < \theta \le T\), from the assumption that

$$\begin{aligned} (h^-_1(\theta ,n_1,n_2,\varepsilon ),h^-_2(\theta ,n_1,n_2,\varepsilon )) \end{aligned}$$

is a solution of system (2.8) satisfying

$$\begin{aligned} (h^-_1(T_1,n_1,n_2,\varepsilon ),h^-_2(T_1,n_1,n_2,\varepsilon ))=(n_1,n_2), \end{aligned}$$

we have two expansions as the following form

$$\begin{aligned} \begin{aligned} h^-_1(\theta ,n_1,n_2,\varepsilon )=&A^-_1(\theta )n_1+A^-_2(\theta )n_2+A^-_3(\theta )\varepsilon \\&+A^-_4(\theta )n^2_1+A^-_5(\theta )n_1n_2+A^-_6(\theta )n^2_2\\&+A^-_7(\theta )n_1\varepsilon +A^-_8(\theta )n_2\varepsilon +A^-_9(\theta )\varepsilon ^2+O(|n_1,n_2,\varepsilon |^3),\\ h^-_2(\theta ,n_1,n_2,\varepsilon )=&B^-_1(\theta )n_2+B^-_2(\theta )\varepsilon +B^-_3(\theta )n_1n_2+B^-_4(\theta )n_1\varepsilon +B^-_5(\theta )n^2_2\\&+B^-_6(\theta )n_2\varepsilon +B^-_7(\theta )\varepsilon ^2+O(|n_2,\varepsilon ||n_1,n_2,\varepsilon |^2), \end{aligned}\nonumber \\ \end{aligned}$$
(5.13)

where

$$\begin{aligned} A^-_1({T_1})= & {} 1,~~~B^-_1({T_1})=1,~~~A^-_i({T_1})=0,~~~B^-_j({T_1})=0,~~~~~i=2,\ldots ,9,~~~\\ j= & {} 2,\ldots ,7. \end{aligned}$$

The expressions of \(A^{-}_i\) and \(B^{-}_j\)\((i=1,\ldots ,9,j=1,\ldots ,7)\) are similar to the expressions of \(A_i^+\) and \(B_j^+\)\((i=1,\ldots ,9,j=1,\ldots ,7)\), so their expressions are omitted here.

Then applying (5.11) and (5.13) gives the succession functions of (2.8) as follows

$$\begin{aligned} \tilde{h}_1(m_1,m_2,\varepsilon )&=h^-_1(T,h^+_1(T_1,m_1,m_2,\varepsilon ),h^+_2(T_1,m_1,m_2,\varepsilon ),\varepsilon )-m_1\nonumber \\&=\bar{c}_1m_1+\bar{c}_2m_2+\bar{c}_3\varepsilon +\bar{c}_4m^2_1+\bar{c}_5m_1m_2+\bar{c}_6m^2_2+\bar{c}_7m_1\varepsilon \nonumber \\&\quad +\bar{c}_8m_2\varepsilon +\bar{c}_9\varepsilon ^2+O(|m_1,m_2,\varepsilon |^3),\nonumber \\ \tilde{h}_2(m_1,m_2,\varepsilon )&=h^-_2(T,h^+_1(T_1,m_1,m_2,\varepsilon ),h^+_2(T_1,m_1,m_2,\varepsilon ),\varepsilon )-m_2\nonumber \\&=\bar{d}_1m_2+\bar{d}_2\varepsilon +\bar{d}_3m_1m_2+\bar{d}_4m_1\varepsilon +\bar{d}_5m^2_2+\bar{d}_6m_2\varepsilon \nonumber \\&\quad +\bar{d}_7\varepsilon ^2+O(|m_2,\varepsilon ||m_1,m_2,\varepsilon |^2), \end{aligned}$$
(5.14)

where

$$\begin{aligned} \bar{c}_1&=A^-_1(T)A^+_1(T_1)-1,\nonumber \\ \bar{c}_2&=A^-_1(T)A^+_2(T_1)+A^-_2(T)B^+_1(T_1),\nonumber \\ \bar{c}_3&=A^-_1(T)A^+_3(T_1)+A^-_2(T)B^+_2(T_1)+A^-_3(T),\nonumber \\ \bar{c}_4&=A^-_1(T)A^+_4(T_1)+A^-_4(T)(A^+_1(T_1))^2,\nonumber \\ \bar{c}_5&=A^-_1(T)A^+_5(T_1)+A^-_2(T)B^+_3(T_1)+2A^-_4(T)A^+_1(T_1)A^+_2(T_1)\nonumber \\&\quad +A^-_5(T)A^+_1(T_1)B^+_1(T_1),\nonumber \\ \bar{c}_6&=A^-_1(T)A^+_6(T_1)+A^-_2(T)B^+_5(T_1)+A^-_4(T)(A^+_2(T_1))^2+A^-_5(T)A^+_2(T_1)B^+_1(T_1)\nonumber \\&\quad +A^-_6(T)(B^+_1(T_1))^2,\nonumber \\ \bar{c}_7&=A^-_1(T)A^+_7(T_1)+A^-_2(T)B^+_4(T_1)+2A^-_4(T)A^+_1(T_1)A^+_3(T_1)+A^-_7(T)A^+_1(T_1)\nonumber \\&\quad +A^-_5(T)A^+_1(T_1)B^+_2(T_1),\nonumber \\ \bar{c}_8&=A^-_1(T)A^+_8(T_1)+A^-_2(T)B^+_6(T_1)+2A^-_4(T)A^+_2(T_1)A^+_3(T_1)\nonumber \\&\quad +A^-_5(T)A^+_3(T_1)B^+_1(T_1)+A^-_5(T)A^+_2(T_1)B^+_2(T_1)+2A^-_6(T)B^+_1(T_1)B^+_2(T_1)\nonumber \\&\quad +A^-_7(T)A^+_2(T_1)+A^-_8(T)B^+_1(T_1),\nonumber \\ \bar{c}_9&=A^-_1(T)A^+_9(T_1)+A^-_2(T)B^+_7(T_1)+A^-_4(T)(A^+_3(T_1))^2+A^-_5(T)A^+_3(T_1)B^+_2(T_1)\nonumber \\&\quad +A^-_6(T)(B^+_2(T_1))^2+A^-_7(T)A^+_3(T_1)+A^-_8(T)B^+_2(T_1)+A^-_9(T),\nonumber \\ \bar{d}_1&=B^-_1(T)B^+_1(T_1)-1,\nonumber \\ \bar{d}_2&=B^-_1(T)B^+_2(T_1)+B^-_2(T),\nonumber \\ \bar{d}_3&=B^-_1(T)B^+_3(T_1)+B^-_3(T)A^+_1(T_1)B^+_1(T_1),\nonumber \\ \bar{d}_4&=B^-_1(T)B^+_4(T_1)+B^-_3(T)A^+_1(T_1)B^+_2(T_1)+B^-_4(T)A^+_1(T_1),\nonumber \\ \bar{d}_5&=B^-_1(T)B^+_5(T_1)+B^-_3(T)A^+_2(T_1)B^+_1(T_1)+B^-_5(T)(B^+_1(T_1))^2,\nonumber \\ \bar{d}_6&=B^-_1(T)B^+_6(T_1)+B^-_3(T)A^+_3(T_1)B^+_1(T_1)+B^-_3(T)A^+_2(T_1)B^+_2(T_1)\nonumber \\&\quad +B^-_4(T)A^+_2(T_1) +2B^-_5(T)B^+_1(T_1)B^+_2(T_1)+B^-_6(T)B^+_1(T_1),\nonumber \\ \bar{d}_7&=B^-_1(T)B^+_7(T_1)+B^-_3(T)A^+_3(T_1)B^+_2(T_1)+B^-_4(T)A^+_3(T_1)+B^-_2(T)(B^+_1(T_1))^2\nonumber \\&\quad +B^-_6(T)B^+_2(T_1)+B^-_7(T). \end{aligned}$$
(5.15)

Similar to (3.2), we obtain the bifurcation Eqs. (3.8) and (3.9). The proof is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S., Han, M. & Zhao, X. Bifurcation of Periodic Orbits of a Three-Dimensional Piecewise Smooth System. Qual. Theory Dyn. Syst. 18, 1077–1112 (2019). https://doi.org/10.1007/s12346-019-00328-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-019-00328-6

Keywords

Navigation