Skip to main content
Log in

The Polarity-Specific Nature of Single-Session High-definition Transcranial Direct Current Stimulation to the Cerebellum and Prefrontal Cortex on Motor and Non-motor Task Performance

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The cerebellum has an increasingly recognized role in higher order cognition. Advancements in noninvasive neuromodulation techniques allow one to focally create functional alterations in the cerebellum to investigate its role in cognitive functions. To this point, work in this area has been mixed, in part due to varying methodologies for stimulation, and it is unclear whether or not transcranial direct current stimulation (tDCS) effects on the cerebellum are task or load dependent. Here, we employed a between-subjects design using a high definition tDCS system to apply anodal, cathodal, or sham stimulation to the cerebellum or prefrontal cortex (PFC) to examine the role the cerebellum plays in verbal working memory, inhibition, motor learning, and balance performance, and how this interaction might interact with the cortex (i.e., PFC). We predicted performance decrements following anodal stimulation and performance increases following cathodal stimulation, compared with sham. Broadly, our work provides evidence for cerebellar contributions to cognitive processing, particularly in verbal working memory and sequence learning. Additionally, we found the effect of stimulation might be load specific, particularly when applied to the cerebellum. Critically, anodal stimulation negatively impacted performance during effortful processing, but was helpful during less effortful processing. Cathodal stimulation hindered task performance, regardless of simulation region. The current results suggest an effect of stimulation on cognition, perhaps suggesting that the cerebellum is more critical when processing is less effortful but becomes less involved under higher load when processing is more prefrontally dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Holmes G. The Cerebellum of Man. Brain. 1939;62(1):1–30. https://doi.org/10.1093/brain/62.1.1.

    Article  Google Scholar 

  2. Ballard HK, Goen JRM, Maldonado T, Bernard JA. Effects of cerebellar transcranial direct current stimulation on the cognitive stage of sequence learning. J Neurophysiol. 2019;122(2):490–9. https://doi.org/10.1152/jn.00036.2019.

    Article  PubMed  Google Scholar 

  3. Bernard JA, Seidler RD. Relationships between regional cerebellar volume and sensorimotor and cognitive function in young and older adults. Cerebellum. 2013;12(5):721–37. https://doi.org/10.1007/s12311-013-0481-z.

    Article  PubMed  Google Scholar 

  4. Buckner RL. The Cerebellum and Cognitive Function: 25 Years of Insight from Anatomy and Neuroimaging. Neuron. 2013;80(3):807–15. https://doi.org/10.1016/J.NEURON.2013.10.044.

    Article  CAS  PubMed  Google Scholar 

  5. Desmond JE, Gabrieli JD, Wagner AD, Ginier BL, Glover GH. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997;17(24):9675–85. https://doi.org/10.1523/JNEUROSCI.17-24-09675.1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Keren-Happuch E, Chen S-HA, Ho M-HR, Desmond JE. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp. 2014;35(2):593–615. https://doi.org/10.1002/hbm.22194.

  7. Leiner HC, Leiner AL, Dow RS. Reappraising the cerebellum: What does the hindbrain contribute to the forebrain? Behav Neurosci. 1989;103(5):998–1008. https://doi.org/10.1037/0735-7044.103.5.998.

    Article  CAS  PubMed  Google Scholar 

  8. Leiner HC, Leiner AL, Dow RS. The human cerebro-cerebellar system: its computing, cognitive, and language skills. Behav Brain Res. 1991;44(2):113–28. https://doi.org/10.1016/S0166-4328(05)80016-6.

    Article  CAS  PubMed  Google Scholar 

  9. Rapoport M, van Reekum R, Mayberg H. The Role of the Cerebellum in Cognition and Behavior. J Neuropsychiatry Clin Neurosci. 2000;12(2):193–8. https://doi.org/10.1176/jnp.12.2.193.

    Article  CAS  PubMed  Google Scholar 

  10. Schmahmann JD. The cerebellum and cognition. Neurosci Lett. 2018;688:62–75. https://doi.org/10.1016/J.NEULET.2018.07.005.

    Article  PubMed  Google Scholar 

  11. Schmahmann J, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79. https://doi.org/10.1093/brain/121.4.561.

    Article  Google Scholar 

  12. Stoodley CJ. The cerebellum and cognition: Evidence from functional imaging studies. Cerebellum. 2012;11(2):352–65. https://doi.org/10.1007/s12311-011-0260-7.

    Article  PubMed  Google Scholar 

  13. King M, Hernandez-Castillo CR, Poldrack RA, Ivry RB, Diedrichsen J. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat Neurosci. 2019;22(8):1371–8. https://doi.org/10.1038/s41593-019-0436-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44. https://doi.org/10.1016/j.cortex.2009.11.008.

  15. Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: An fMRI study. NeuroImage. 2012a;59(2):1560–70. https://doi.org/10.1016/j.neuroimage.2011.08.065.

    Article  PubMed  Google Scholar 

  16. Stoodley CJ, Valera E, Schmahmann J. Functional topography of the cerebellum for cognitive and motor tasks. Neuron. 2012b;59(2):1560–70. https://doi.org/10.1016/j.neuroimage.2011.08.065.Functional.

    Article  Google Scholar 

  17. Stoodley C, Schmahmann J. Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies. NeuroImage. 2009;44(2):489–501. https://doi.org/10.1016/j.neuroimage.2008.08.039.

    Article  PubMed  Google Scholar 

  18. Bernard JA, Orr JM, Mittal VA. Differential motor and prefrontal cerebello-cortical network development: Evidence from multimodal neuroimaging. NeuroImage. 2016;124(Pt A):591–601. https://doi.org/10.1016/j.neuroimage.2015.09.022.

    Article  PubMed  Google Scholar 

  19. Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89(1):634–9. https://doi.org/10.1152/jn.00626.2002.

    Article  Google Scholar 

  20. Kelly RM, Strick PL. Rabies as a transneuronal tracer of circuits in the central nervous system. In: J Neurosci Methods. 2000;103:63-71. Retrieved from www.elsevier.com/locate/jneumeth. Accessed 2018-11-09

  21. Palesi F, Tournier J-D, Calamante F, Muhlert N, Castellazzi G, Chard D, et al. Contralateral cerebello-thalamo-cortical pathways with prominent involvement of associative areas in humans in vivo. Brain Struct Funct. 2015;220(6):3369–84. https://doi.org/10.1007/s00429-014-0861-2.

    Article  PubMed  Google Scholar 

  22. Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7(7):511–22. https://doi.org/10.1038/nrn1953.

    Article  CAS  PubMed  Google Scholar 

  23. Sen S, Kawaguchi A, Truong Y, Lewis MM, Huang X. Dynamic changes in cerebello-thalamo-cortical motor circuitry during progression of Parkinson’s disease. Neuroscience. 2010;166(2):712–9. https://doi.org/10.1016/J.NEUROSCIENCE.2009.12.036.

    Article  CAS  PubMed  Google Scholar 

  24. Schmahmann JD. An emerging concept: The cerebellar contribution to higher function. Arch Neurol. 1991;48(11):1178–87. https://doi.org/10.1001/archneur.1991.00530230086029.

    Article  CAS  PubMed  Google Scholar 

  25. Timmann D, Drepper J, Frings M, Maschke M, Richter S, Gerwig M, et al. The human cerebellum contributes to motor, emotional and cognitive associative learning. A review. Cortex. 2010;46:845–57. https://doi.org/10.1016/j.cortex.2009.06.009.

    Article  CAS  PubMed  Google Scholar 

  26. Timmann D, Daum I. Cerebellar contributions to cognitive functions: A progress report after two decades of research. Cerebellum. 2007;6:159–62. https://doi.org/10.1080/14734220701496448.

    Article  PubMed  Google Scholar 

  27. Ferrucci R, Cortese F, Priori A. Cerebellar tDCS: How to Do It. Cerebellum. 2015;14(1):27–30. https://doi.org/10.1007/s12311-014-0599-7.

    Article  PubMed  Google Scholar 

  28. Ferrucci R, Priori A. Transcranial cerebellar direct current stimulation (tcDCS): Motor control, cognition, learning and emotions. NeuroImage. 2014;85:918–23. https://doi.org/10.1016/j.neuroimage.2013.04.122.

    Article  PubMed  Google Scholar 

  29. Oldrati V, Schutter DJLG. Targeting the Human Cerebellum with Transcranial Direct Current Stimulation to Modulate Behavior : a Meta-Analysis. Cerebellum. 2018;17(2):228–36. https://doi.org/10.1007/s12311-017-0877-2.

    Article  PubMed  Google Scholar 

  30. Buch ER, Santarnecchi E, Antal A, Born J, Celnik PA, Classen J, et al. Effects of tDCS on motor learning and memory formation: A consensus and critical position paper. Clin Neurophysiol. 2017, April 1;128:589–603. https://doi.org/10.1016/j.clinph.2017.01.004.

    Article  PubMed  Google Scholar 

  31. Shah B, Nguyen TT, Madhavan S. Polarity independent effects of cerebellar tDCS on short term ankle visuomotor learning. Brain Stimul. 2013;6(6):966–8. https://doi.org/10.1016/j.brs.2013.04.008.

    Article  PubMed  Google Scholar 

  32. Block H, Celnik P. Stimulating the Cerebellum Affects Visuomotor Adaptation but not Intermanual Transfer of Learning. Cerebellum. 2013;12:781–93. https://doi.org/10.1007/s12311-013-0486-7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cantarero G, Spampinato D, Reis J, Ajagbe L, Thompson T, Kulkarni K, et al. Cerebellar direct current stimulation enhances on-line motor skill acquisition through an effect on accuracy. J Neurosci. 2015;35(7):3285–90. https://doi.org/10.1523/JNEUROSCI.2885-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Galea JM, Vazquez A, Pasricha N, Orban De Xivry J-J, Celnik P. Dissociating the Roles of the Cerebellum and Motor Cortex during Adaptive Learning: The Motor Cortex Retains What the Cerebellum Learns. Cereb Cortex. 2011;21:1761–70. https://doi.org/10.1093/cercor/bhq246.

    Article  PubMed  Google Scholar 

  35. Hardwick RM, Celnik PA. Cerebellar direct current stimulation enhances motor learning in older adults. Neurobiol Aging. 2014;35(10):2217–21. https://doi.org/10.1016/j.neurobiolaging.2014.03.030.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pope PA, Miall RC. Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul. 2012;5(2):84–94. https://doi.org/10.1016/j.brs.2012.03.006.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mannarelli D, Pauletti C, Currà A, Marinelli L, Corrado A, Delle Chiaie R, et al. The Cerebellum Modulates Attention Network Functioning: Evidence from a Cerebellar Transcranial Direct Current Stimulation and Attention Network Test Study. Cerebellum. 2019;18(3):457–68. https://doi.org/10.1007/s12311-019-01014-8.

    Article  PubMed  Google Scholar 

  38. Wynn SC, Driessen JMA, Glennon JC, Brazil IA, Schutter DJLG. Cerebellar Transcranial Direct Current Stimulation Improves Reactive Response Inhibition in Healthy Volunteers. Cerebellum. 2019;18(6):983–8. https://doi.org/10.1007/s12311-019-01047-z.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Boehringer A, Macher K, Dukart J, Villringer A, Pleger B. Cerebellar transcranial direct current stimulation modulates verbal working memory. Brain Stimul. 2013;6(4):649–53. https://doi.org/10.1016/j.brs.2012.10.001.

    Article  PubMed  Google Scholar 

  40. Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, et al. Cerebellar Transcranial Direct Current Stimulation Impairs the Practice-dependent Proficiency Increase in Working Memory. J Cogn Neurosci. 2008;20(9):1687–97. https://doi.org/10.1162/jocn.2008.20112.

    Article  CAS  PubMed  Google Scholar 

  41. Spielmann K, van der Vliet R, van de Sandt-Koenderman WME, Frens MA, Ribbers GM, Selles RW, et al. Cerebellar Cathodal Transcranial Direct Stimulation and Performance on a Verb Generation Task: A Replication Study. Neural Plast. 2017;2017:1–12. https://doi.org/10.1155/2017/1254615.

    Article  Google Scholar 

  42. Steiner KM, Enders A, Thier W, Batsikadze G, Ludolph N, Ilg W, et al. Cerebellar tDCS Does Not Improve Learning in a Complex Whole Body Dynamic Balance Task in Young Healthy Subjects. PLoS One. 2016;11(9):e0163598. https://doi.org/10.1371/journal.pone.0163598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Verhage MC, Avila EO, Frens MA, Donchin O, van der Geest JN. Cerebellar tDCS Does Not Enhance Performance in an Implicit Categorization Learning Task. Front Psychol. 2017;8:476. https://doi.org/10.3389/fpsyg.2017.00476.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Maldonado T, Goen JRM, Imburgio MJ, Eakin SM, Bernard JA. Single session high definition transcranial direct current stimulation to the cerebellum does not impact higher cognitive function. PLOS ONE. 2019;14(10):e0222995. https://doi.org/10.1371/journal.pone.0222995.

  45. van Wessel BWV, Claire Verhage M, Holland P, Frens MA, van der Geest JN. Cerebellar tDCS does not affect performance in the N-back task. J Clin Exp Neuropsychol. 2016;38(3):319–26. https://doi.org/10.1080/13803395.2015.1109610.

    Article  PubMed  Google Scholar 

  46. Majidi SN, Verhage MC, Donchin O, Holland P, Frens MA, van der Geest JN. Cerebellar tDCS does not improve performance in probabilistic classification learning. Exp Brain Res. 2017;235(2):421–8. https://doi.org/10.1007/s00221-016-4800-8.

    Article  Google Scholar 

  47. Grimaldi G, Argyropoulos GP, Bastian A, Cortes M, Davis NJ, Edwards DJ, et al. Cerebellar Transcranial Direct Current Stimulation (ctDCS): A Novel Approach to Understanding Cerebellar Function in Health and Disease. Neuroscientist. 2016;22(1):83–97. https://doi.org/10.1177/1073858414559409.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Diedrichsen J, King M, Hernandez-Castillo C, Sereno M, Ivry RB. Universal Transform or Multiple Functionality? Understanding the Contribution of the Human Cerebellum across Task Domains. Neuron. 2019;102(5):918–28. https://doi.org/10.1016/j.neuron.2019.04.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Filip P, Gallea C, Lehéricy S, Lungu O, Bareš M. Neural Scaffolding as the Foundation for Stable Performance of Aging Cerebellum. Cerebellum. 2019;18(3):500–10. https://doi.org/10.1007/s12311-019-01015-7.

    Article  PubMed  Google Scholar 

  50. Ramnani N. Automatic and controlled processing in the corticocerebellar system. In: Prog Brain Res. 2014;210:255–285. https://doi.org/10.1016/B978-0-444-63356-9.00010-8.

  51. Doyon J, Gabitov E, Vahdat S, Lungu O, Boutin A. Current issues related to motor sequence learning in humans. Curr Opin Behav Sci. 2018;20:89–97. https://doi.org/10.1016/j.cobeha.2017.11.012.

    Article  Google Scholar 

  52. Karni A, Meyer G, Rey-Hipolito C, Jezzard P, Adams MM, Turner R, et al. The acquisition of skilled motor performance: Fast and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci U S A. 1998;95(3):861–8. https://doi.org/10.1073/pnas.95.3.861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Braver TS, Cohen JD, Nystrom LE, Jonides J, Smith EE, Noll DC. A parametric study of prefrontal cortex involvement in human working memory. NeuroImage. 1997;5(1):49–62. https://doi.org/10.1006/nimg.1996.0247.

    Article  CAS  PubMed  Google Scholar 

  54. Rypma B, D’Esposito M. The roles of prefrontal brain regions in components of working memory: Effects of memory load and individual differences. Proc Natl Acad Sci U S A. 1999;96(11):6558–63. https://doi.org/10.1073/pnas.96.11.6558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ito M. Cerebellar circuitry as a neuronal machine. Prog Neurobiol. 2006, February;78:272–303. https://doi.org/10.1016/j.pneurobio.2006.02.006.

    Article  PubMed  Google Scholar 

  56. Bernard JA, Dean DJ, Kent JS, Orr JM, Pelletier-Baldelli A, Lunsford-Avery JR, et al. Cerebellar networks in individuals at ultra high-risk of psychosis: Impact on postural sway and symptom severity. Hum Brain Mapp. 2014;35(8):4064–78. https://doi.org/10.1002/hbm.22458.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Oliveira LF, Simpson DM, Nadal J. Calculation of area of stabilometric signals using principal component analysis. In: Physiol Meas. 1996;17:305-312.

  58. Oldfield RC. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113. https://doi.org/10.1016/0028-3932(71)90067-4.

    Article  CAS  PubMed  Google Scholar 

  59. Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol. 1935;18(6):643–62. https://doi.org/10.1037/h0054651.

    Article  Google Scholar 

  60. Sternberg S. High-speed scanning in human memory. Science. 1966;153(3736):652–4. https://doi.org/10.1126/SCIENCE.153.3736.652.

    Article  CAS  PubMed  Google Scholar 

  61. Kwak Y, Müller MLTM, Bohnen NI, Dayalu P, Seidler RD. L-DOPA changes ventral striatum recruitment during motor sequence learning in Parkinson’s disease. Behav Brain Res. 2012;230(1):116–24. https://doi.org/10.1016/j.bbr.2012.02.006.

    Article  CAS  PubMed  Google Scholar 

  62. Datta A, Sen S, Zick Y. Algorithmic transparency via quantitative input influence: Theory and experiments with learning systems. 2016 IEEE Symposium on Security and Privacy (SP). 2016;598–617. https://doi.org/10.1109/SP.2016.42.

  63. Huang Y, Liu AA, Lafon B, Friedman D, Dayan M, Wang X, et al. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. ELife. 2017;6. https://doi.org/10.7554/eLife.18834.

  64. Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009;2(4):201–7, 207.e1. https://doi.org/10.1016/j.brs.2009.03.005.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Datta A, Truong D, Minhas P, Parra LC, Bikson M. Inter-Individual Variation during Transcranial Direct Current Stimulation and Normalization of Dose Using MRI-Derived Computational Models. Front Psychiatry. 2012;3:91. https://doi.org/10.3389/fpsyt.2012.00091.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Dmochowski JP, Datta A, Bikson M, Su Y, Parra LC. Optimized multi-electrode stimulation increases focality and intensity at target. J Neural Eng. 2011;8(4):046011. https://doi.org/10.1088/1741-2560/8/4/046011.

    Article  PubMed  Google Scholar 

  67. Villamar MF, Volz MS, Bikson M, Datta A, DaSilva AF, Fregni F. Technique and Considerations in the Use of 4 × 1 Ring High-definition Transcranial Direct Current Stimulation (HD-tDCS). J Vis Exp. 2013;77:e50309. https://doi.org/10.3791/50309.

    Article  Google Scholar 

  68. Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R, et al. Non-invasive cerebellar stimulation - a consensus paper. Cerebellum. 2014;13(1):121–38. https://doi.org/10.1007/s12311-013-0514-7.

    Article  CAS  PubMed  Google Scholar 

  69. Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57(10):1899–901. https://doi.org/10.1212/WNL.57.10.1899.

    Article  CAS  PubMed  Google Scholar 

  70. Sochat V. The Experiment Factory: Reproducible Experiment Containers Software • Review • Repository • Archive. 2018. https://doi.org/10.21105/joss.00521.

  71. Osborne KJ, Bernard JA, Gupta T, Dean DJ, Millman Z, Vargas T, et al. Beat gestures and postural control in youth at ultrahigh risk for psychosis. Schizophr Res. 2017;185:197–9. https://doi.org/10.1016/j.schres.2016.11.028.

    Article  PubMed  Google Scholar 

  72. Kent JS, Hong SL, Bolbecker AR, Klaunig MJ, Forsyth JK, O’Donnell BF, et al. Motor deficits in Schizophrenia quantified by nonlinear analysis of postural sway. PLoS One. 2012;7(8):41808. https://doi.org/10.1371/journal.pone.0041808.

    Article  CAS  Google Scholar 

  73. Team RC. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2018.

    Google Scholar 

  74. Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw. 2015;67(1). https://doi.org/10.18637/jss.v067.i01.

  75. Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest Package: Tests in Linear Mixed Effects Models. J Stat Softw. 2017;82(13). https://doi.org/10.18637/jss.v082.i13.

  76. Lenth R, Singmann H, Love J, Buerkner P, Herve M. Emmeans: Estimated marginal means, aka least-squares means. R Package Version. 2018 1(1). https://doi.org/10.1080/00031305.1980.10483031

  77. Imburgio MJ, Orr JM. Effects of prefrontal tDCS on executive function: Methodological considerations revealed by meta-analysis. Neuropsychologia. 2018;117:156–66. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2018.04.022.

    Article  PubMed  Google Scholar 

  78. Cowan N. The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behav Brain Sci. 2001;24(1):87–114. https://doi.org/10.1017/S0140525X01003922.

    Article  CAS  PubMed  Google Scholar 

  79. Miller GA. The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev. 1956;63(2):81–97. https://doi.org/10.1037/h0043158.

    Article  CAS  PubMed  Google Scholar 

  80. Doyon J, Gaudreau D, Laforce RL, Castonguay M, Bédard PJ, Bédard F, et al. Role of the striatum, cerebellum, and frontal lobes in the learning of a visuomotor sequence. Brain Cogn. 1997;34(2):218–45. https://doi.org/10.1006/brcg.1997.0899.

    Article  CAS  PubMed  Google Scholar 

  81. Bo J, Seidler RD. Visuospatial Working Memory Capacity Predicts the Organization of Acquired Explicit Motor Sequences. J Neurophysiol. 2009;101(6):3116–25. https://doi.org/10.1152/jn.00006.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Verwey WB. Buffer loading and chunking in sequential keypressing. J Exp Psychol Hum Percept Perform. 1996;3(22):544–62.

    Article  Google Scholar 

  83. Verwey WB. Concatenating familiar movement sequences: The versatile cognitive processor. Acta Psychol. 2001;106(1–2):69–95. https://doi.org/10.1016/S0001-6918(00)00027-5.

    Article  CAS  Google Scholar 

  84. Nardone A, Tarantola J, Giordano A, Schieppati M. Fatigue effects on body balance. Electroencephalogr Clin Neurophysiol. 1997;105(4):309–20. https://doi.org/10.1016/S0924-980X(97)00040-4.

    Article  CAS  PubMed  Google Scholar 

  85. Nichols DS, Glenn TS, Hutchinson KJ. Changes in the Mean Center of Balance During Balance Testing in Young Adults. Phys Ther. 1995;75(8):699–708. https://doi.org/10.1093/ptj/75.8.699.

    Article  CAS  PubMed  Google Scholar 

  86. Huxhold O, Li SC, Schmiedek F, Lindenberger U. Dual-tasking postural control: Aging and the effects of cognitive demand in conjunction with focus of attention. Brain Res Bull. 2006;69(3):294–305. https://doi.org/10.1016/j.brainresbull.2006.01.002.

    Article  PubMed  Google Scholar 

  87. Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: The cerebellum’s role in movement and cognition. Cerebellum. 2014;13(1):151–77. https://doi.org/10.1007/s12311-013-0511-x.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank research assistants Cassidy Carrasco, Malin Chambers, Sydney Eakin, Kristin Eiland, James Goen, Abigail Miller, Isai Ramirez, and Lisset Salinas for their help with data collection.

Author information

Authors and Affiliations

Authors

Contributions

TM and JAB designed the study. TM collected and processed data. TM completed the data analysis and TM and JAB interpreted the data and drafted the manuscript.

Corresponding author

Correspondence to Ted Maldonado.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maldonado, T., Bernard, J.A. The Polarity-Specific Nature of Single-Session High-definition Transcranial Direct Current Stimulation to the Cerebellum and Prefrontal Cortex on Motor and Non-motor Task Performance. Cerebellum 20, 569–583 (2021). https://doi.org/10.1007/s12311-021-01235-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-021-01235-w

Keywords

Navigation