Skip to main content
Log in

Normal Cerebellar Development in S100B-Deficient Mice

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The calcium-binding protein S100B has been shown to support neuron proliferation, migration and neurite growth in vitro, while the significance of S100B for neuronal development in vivo is controversial. We have investigated the effect of S100B deficiency on cerebellar development in S100B knockout mice at an age of 5 and 10 days after birth (P5 and P10). This time range covers important developmental steps in the cerebellum such as granule cell proliferation and migration, as well as dendritic growth of Purkinje cells. Bergmann glial cells contain a particularly high concentration of S100B and serve as scaffold for both migrating granule cells and growing Purkinje cell dendrites. This renders the postnatal cerebellum ideal as a model system to study the importance of S100B for glial and neuronal development. We measured the length of Bergmann glial processes, the width of the external granule cell layer as a measure of granule cell proliferation, the decrease in width of the external granule cell layer between P5 and P10 as a measure of granule cell migration, and the length of Purkinje cell dendrites in wild-type and S100B knockout mice. None of these parameters showed significant differences between wild-type and knockout mice. In addition, wild-type and knockout mice performed equally in locomotor behaviour tests. The results indicate that S100B-deficient mice have normal development of the cerebellum and no severe impairment of motor function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, et al. Functions of S100 proteins. Curr Mol Med. 2013;13:24–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Marshak DR. S100 beta as a neurotrophic factor. Prog Brain Res. 1990;86:169–81.

    Article  CAS  PubMed  Google Scholar 

  3. Rothermundt M, Ahn JN, Jorgens S. S100B in schizophrenia: an update. Gen Physiol Biophys. 2009;28:F76–81.

    PubMed  Google Scholar 

  4. Rothermundt M, Peters M, Prehn JHM, Arolt V. S100B in brain damage and neurodegeneration. Microsc Res Tech. 2003;60:614–32.

    Article  CAS  PubMed  Google Scholar 

  5. Steiner J, Bogerts B, Schroeter ML, Bernstein H. S100B protein in neurodegenerative disorders. Clin Chem Lab Med. 2011;49:409–24.

    Article  CAS  PubMed  Google Scholar 

  6. Peskind ER, Griffin WS, Akama KT, Raskind MA, van Eldik LJ. Cerebrospinal fluid S100B is elevated in the earlier stages of Alzheimer's disease. Neurochem Int. 2001;39:409–13.

    Article  CAS  PubMed  Google Scholar 

  7. Roche S, Cassidy F, Zhao C, Badger J, Claffey E, Mooney L, et al. Candidate gene analysis of 21q22: Support for S100B as a susceptibility gene for bipolar affective disorder with psychosis. Am J Med Genet. 2007;144:1094–6.

    Article  Google Scholar 

  8. Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, et al. S100B's double life: Intracellular regulator and extracellular signal. Biochim Biophys Acta. 2009;1793:1008–22.

    Article  CAS  PubMed  Google Scholar 

  9. Baudier J, Delphin C, Grunwald D, Khochbin S, Lawrence JJ. Characterization of the tumor suppressor protein p53 as a protein kinase C substrate and a S100b-binding protein. Proc Natl Acad Sci U S A. 1992;89:11627–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Brozzi F, Arcuri C, Giambanco I, Donato R. S100B Protein Regulates Astrocyte Shape and Migration via Interaction with Src Kinase: Implications for astrocyte development, activation, and tumor growth. J Biol Chem. 2009;284:8797–811.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ikura M, Osawa M, Ames JB. The role of calcium-binding proteins in the control of transcription: structure to function. Bioessays. 2002;24:625–36.

    Article  CAS  PubMed  Google Scholar 

  12. Sorci G, Riuzzi F, Arcuri C, Tubaro C, Bianchi R, Giambanco I, et al. S100B protein in tissue development, repair and regeneration. WJBC. 2013;4:1.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Saleh A, Smith DR, Tessler L, Mateo AR, Martens C, Schartner E, et al. Receptor for advanced glycation end-products (RAGE) activates divergent signaling pathways to augment neurite outgrowth of adult sensory neurons. Exp Neurol. 2013;249:149–59.

    Article  CAS  PubMed  Google Scholar 

  14. Villarreal A, Aviles Reyes RX, Angelo MF, Reines AG, Ramos AJ. S100B alters neuronal survival and dendrite extension via RAGE-mediated NF-κB signaling. J Neurochem. 2011;117:321–32.

    Article  CAS  PubMed  Google Scholar 

  15. Buffo A, Rossi F. Origin, lineage and function of cerebellar glia. Prog Neurobiol. 2013;109:42–63.

    Article  PubMed  Google Scholar 

  16. Xu H, Yang Y, Tang X, Zhao M, Liang F, Xu P, et al. Bergmann glia function in granule cell migration during cerebellum development. Mol Neurobiol. 2013;47:833–44.

    Article  CAS  PubMed  Google Scholar 

  17. Heinsen H. Quantitative anatomical studies on the postnatal development of the cerebellum of the albino rat. Anat Embryol (Berl). 1977;151:201–18.

    Article  CAS  Google Scholar 

  18. Komuro H, Yacubova E. Recent advances in cerebellar granule cell migration. Cell Mol Life Sci. 2003;60:1084–98.

    CAS  PubMed  Google Scholar 

  19. Kapfhammer JP. Cellular and molecular control of dendritic growth and development of cerebellar Purkinje cells. Prog Histochem Cytochem. 2004;39:131–82.

    Article  PubMed  Google Scholar 

  20. Lordkipanidze T, Dunaevsky A. Purkinje cell dendrites grow in alignment with Bergmann glia. Glia. 2005;51:229–34.

    Article  PubMed  Google Scholar 

  21. Thyssen A, Stavermann M, Buddrus K, Doengi M, Ekberg JA, St John JA, et al. Spatial and developmental heterogeneity of calcium signaling in olfactory ensheathing cells. Glia. 2013;61:327–37.

    Article  PubMed  Google Scholar 

  22. Singaravelu K, Lohr C, Deitmer JW. Regulation of store-operated calcium entry by calcium-independent phospholipase A2 in rat cerebellar astrocytes. J Neurosci. 2006;26:9579–92.

    Article  CAS  PubMed  Google Scholar 

  23. Stavermann M, Buddrus K, St John JA, Ekberg JA, Nilius B, Deitmer JW, et al. Temperature-dependent calcium-induced calcium release via InsP3 receptors in mouse olfactory ensheathing glial cells. Cell Calcium. 2012;52:113–23.

    Article  CAS  PubMed  Google Scholar 

  24. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.

    Article  CAS  PubMed  Google Scholar 

  25. Deloulme JC, Gentil BJ, Baudier J. Monitoring of S100 homodimerization and heterodimeric interactions by the yeast two-hybrid system. Microsc Res Tech. 2003;60:560–8.

    Article  CAS  PubMed  Google Scholar 

  26. Lohr C, Heil JE, Deitmer JW. Blockage of voltage-gated calcium signaling impairs migration of glial cells in vivo. Glia. 2005;50:198–211.

    Article  PubMed  Google Scholar 

  27. Lohr C, Grosche A, Reichenbach A, Hirnet D. Purinergic neuron-glia interactions in sensory systems. Pflugers Arch. 2014;466:1859–72.

    Article  CAS  PubMed  Google Scholar 

  28. Rosenberg SS, Spitzer NC. Calcium signaling in neuronal development. Cold Spring Harbor Perspect Biol. 2011;3:a004259.

    Google Scholar 

  29. Deitmer JW, Verkhratsky AJ, Lohr C. Calcium signalling in glial cells. Cell Calcium. 1998;24:405–16.

    Article  CAS  PubMed  Google Scholar 

  30. Ciccarelli R, Di Iorio P, Bruno V, Battaglia G, D'Alimonte I, D'Onofrio M, et al. Activation of A1 adenosine or mGlu3 metabotropic glutamate receptors enhances the release of nerve growth factor and S-100beta protein from cultured astrocytes. Glia. 1999;27:275–81.

    Article  CAS  PubMed  Google Scholar 

  31. Pinto SS, Gottfried C, Mendez A, Goncalves D, Karl J, Goncalves CA, et al. Immunocontent and secretion of S100B in astrocyte cultures from different brain regions in relation to morphology. FEBS Lett. 2000;486:203–7.

    Article  CAS  PubMed  Google Scholar 

  32. Hanke S, Reichenbach A. Quantitative-morphometric aspects of Bergmann glial (Golgi epithelial) cell development in rats. A Golgi study. Anat Embryol (Berl). 1987;177:183–8.

    Article  CAS  Google Scholar 

  33. Hachem S, Laurenson A, Hugnot J, Legraverend C. Expression of S100B during embryonic development of the mouse cerebellum. BMC Dev Biol. 2007;7:17.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Xiong Z, O'Hanlon D, Becker LE, Roder J, MacDonald JF, Marks A. Enhanced calcium transients in glial cells in neonatal cerebellar cultures derived from S100B null mice. Exp Cell Res. 2000;257:281–9.

    Article  CAS  PubMed  Google Scholar 

  35. Jean YY, Lercher LD, Dreyfus CF. Glutamate elicits release of BDNF from basal forebrain astrocytes in a process dependent on metabotropic receptors and the PLC pathway. Neuron Glia Biol. 2008;4:35–42.

    Article  PubMed  Google Scholar 

  36. Vig PJ, Shao Q, Subramony SH, Lopez ME, Safaya E. Bergmann glial S100B activates myo-inositol monophosphatase 1 and Co-localizes to purkinje cell vacuoles in SCA1 transgenic mice. Cerebellum. 2009;8:231–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Chang MS, Ariah LM, Marks A, Azmitia EC. Chronic gliosis induced by loss of S-100B: knockout mice have enhanced GFAP-immunoreactivity but blunted response to a serotonin challenge. Brain Res. 2005;1031:1–9.

    Article  CAS  PubMed  Google Scholar 

  38. Schulte-Herbrüggen O, Hörtnagl H, Ponath G, Rothermundt M, Hellweg R. Distinct regulation of brain-derived neurotrophic factor and noradrenaline in S100B knockout mice. Neurosci Lett. 2008;442:100–3.

    Article  PubMed  Google Scholar 

  39. Kim HR, Seto-Ohshima A, Nishiyama H, Itohara S. Normal delay eyeblink conditioning in mice devoid of astrocytic S100B. Neurosci Lett. 2011;489:148–53.

    Article  CAS  PubMed  Google Scholar 

  40. Nishiyama H, Takemura M, Takeda T, Itohara S. Normal development of serotonergic neurons in mice lacking S100B. Neurosci Lett. 2002;321:49–52.

    Article  CAS  PubMed  Google Scholar 

  41. Buschert J, Hohoff C, Touma C, Palme R, Rothermundt M, Arolt V, et al. S100B overexpression increases behavioral and neural plasticity in response to the social environment during adolescence. J Psychiatry Res. 2013;47:1791–9.

    Article  Google Scholar 

  42. Gerlai R, Wojtowicz JM, Marks A, Roder J. Overexpression of a calcium-binding protein, S100 beta, in astrocytes alters synaptic plasticity and impairs spatial learning in transgenic mice. Learn Mem. 1995;2:26–39.

    Article  CAS  PubMed  Google Scholar 

  43. Nishiyama H, Knopfel T, Endo S, Itohara S. Glial protein S100B modulates long-term neuronal synaptic plasticity. Proc Natl Acad Sci U S A. 2002;99:4037–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Craft JM, Watterson DM, Marks A, Van Eldik LJ. Enhanced susceptibility of S-100B transgenic mice to neuroinflammation and neuronal dysfunction induced by intracerebroventricular infusion of human beta-amyloid. Glia. 2005;51:209–16.

    Article  PubMed  Google Scholar 

  45. Liu J, Wang H, Zhang L, Xu Y, Deng W, Zhu H, et al. S100B transgenic mice develop features of Parkinson's disease. Arch Med Res. 2011;42:1–7.

    Article  PubMed  Google Scholar 

  46. Whitaker-Azmitia PM, Wingate M, Borella A, Gerlai R, Roder J, Azmitia EC. Transgenic mice overexpressing the neurotrophic factor S-100 beta show neuronal cytoskeletal and behavioral signs of altered aging processes: implications for Alzheimer's disease and Down's syndrome. Brain Res. 1997;776:51–60.

    Article  CAS  PubMed  Google Scholar 

  47. Winningham-Major F, Staecker JL, Barger SW, Coats S, van Eldik LJ. Neurite extension and neuronal survival activities of recombinant S100 beta proteins that differ in the content and position of cysteine residues. J Cell Biol. 1989;109:3063–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank M. Doengi, C. Schettler (Münster) and A. C. Rakete (Hamburg) for technical assistance. Financial support by the Deutsche Forschungsgemeinschaft (LO 779/6) is gratefully acknowledged. The authors thank Alexander Marks (Toronto) for kindly providing two breeding pairs of S100B knockout mice.

Conflict of Interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Lohr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bluhm, B., Laffer, B., Hirnet, D. et al. Normal Cerebellar Development in S100B-Deficient Mice. Cerebellum 14, 119–127 (2015). https://doi.org/10.1007/s12311-014-0606-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-014-0606-z

Keywords

Navigation