Skip to main content
Log in

Cerebellar Inhibitory Output Shapes the Temporal Dynamics of Its Somatosensory Inferior Olivary Input

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The cerebellum is necessary and sufficient for the acquisition and execution of adaptively timed conditioned motor responses following repeated paired presentations of a conditioned stimulus and an unconditioned stimulus. The underlying plasticity depends on the convergence of conditioned and unconditioned stimuli signals relayed to the cerebellum by the pontine nucleus and the inferior olive (IO), respectively. Adaptive timing of conditioned responses relies on the correctly predicted onset of the unconditioned stimulus, usually a noxious somatosensory stimulus. We addressed two questions: First, does the IO relay information regarding the duration of somatosensory stimuli to the cerebellum? Multiple-unit recordings from the IO of anesthetized rats that received periorbital airpuffs of various durations revealed that sustained somatosensory stimuli are invariably transformed into phasic IO outputs. The phasic response was followed by a post-peak depression in IO activity as compared to baseline, providing the cerebellum with a highly synchronous signal, time-locked to the stimulus’ onset. Second, we sought to examine the involvement of olivocerebellar interactions in this signal transformation. Cerebello-olivary inhibition was interrupted using temporary pharmacological inactivation of cerebellar output nuclei, resulting in more sustained (i.e., less synchronous) IO responses to sustained somatosensory stimuli, in which the post-peak depression was substituted with elevated activity as compared to baseline. We discuss the possible roles of olivocerebellar negative-feedback loops and baseline cerebello-olivary inhibition levels in shaping the temporal dynamics of the IO’s response to somatosensory stimuli and the consequences of this shaping for cerebellar plasticity and its ability to adapt to varying contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Thompson RF, Steinmetz JE. The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience. 2009;162(3):732–55.

    Article  CAS  PubMed  Google Scholar 

  2. Freeman JH, Steinmetz AB. Neural circuitry and plasticity mechanisms underlying delay eyeblink conditioning. Learn Mem. 2011;18(10):666–77.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Gao Z, van Beugen BJ, De Zeeuw CI. Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci. 2012;13(9):619–35.

    Article  CAS  PubMed  Google Scholar 

  4. Smith MC, Coleman SR, Gormezano I. Classical conditioning of the rabbit’s nictitating membrane response at backward, simultaneous, and forward CS-US intervals. J Comp Physiol Psychol. 1969;69(2):226–31.

    Article  CAS  PubMed  Google Scholar 

  5. Mauk MD, Ruiz BP. Learning-dependent timing of Pavlovian eyelid responses: differential conditioning using multiple interstimulus intervals. Behav Neurosci. 1992;106(4):666–81.

    Article  CAS  PubMed  Google Scholar 

  6. Rogers RF, Britton GB, Steinmetz JE. Learning-related interpositus activity is conserved across species as studied during eyeblink conditioning in the rat. Brain Res. 2001;905(1–2):171–7.

    Article  CAS  PubMed  Google Scholar 

  7. Van Der Giessen RS, Koekkoek SK, van Dorp S, De Gruijl JR, Cupido A, Khosrovani S, et al. Role of olivary electrical coupling in cerebellar motor learning. Neuron. 2008;58(4):599–612.

    Article  Google Scholar 

  8. Mauk MD, Steinmetz JE, Thompson RF. Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus. Proc Natl Acad Sci U S A. 1986;83(14):5349–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Steinmetz JE, Lavond DG, Thompson RF. Classical conditioning in rabbits using pontine nucleus stimulation as a conditioned stimulus and inferior olive stimulation as an unconditioned stimulus. Synapse. 1989;3(3):225–33.

    Article  CAS  PubMed  Google Scholar 

  10. Medina JF, Nores WL, Mauk MD. Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses. Nature. 2002;416(6878):330–3.

    Article  CAS  PubMed  Google Scholar 

  11. Rasmussen A, Jirenhed D, Zucca R, Johansson F, Svensson P, Hesslow G. Number of spikes in climbing fibers determines the direction of cerebellar learning. J Neurosci. 2013;33(33):13436–40.

    Article  CAS  PubMed  Google Scholar 

  12. Thompson RF, Thompson JK, Kim JJ, Krupa DJ, Shinkman PG. The nature of reinforcement in cerebellar learning. Neurobiol Learn Mem. 1998;70(1–2):150–76.

    Article  CAS  PubMed  Google Scholar 

  13. Apps R, Garwicz M. Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci. 2005;6(4):297–311.

    Article  CAS  PubMed  Google Scholar 

  14. Badura A, Schonewille M, Voges K, Galliano E, Renier N, Gao Z, et al. Climbing fiber input shapes reciprocity of Purkinje cell firing. Neuron. 2013;78(4):700–13.

    Article  CAS  PubMed  Google Scholar 

  15. Chapman PF, Steinmetz JE, Sears LL, Thompson RF. Effects of lidocaine injection in the interpositus nucleus and red nucleus on conditioned behavioral and neuronal responses. Brain Res. 1990;537(1):149–56.

    Article  CAS  PubMed  Google Scholar 

  16. Lavond DG, Kim JJ, Thompson RF. Mammalian brain substrates of aversive classical conditioning. Annu Rev Psychol. 1993;44(1):317–42.

    Article  CAS  PubMed  Google Scholar 

  17. Hesslow G. Correspondence between climbing fibre input and motor output in eyeblink-related areas in cat cerebellar cortex. J Physiol. 1994;476(2):229–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. De Zeeuw C, Holstege J, Calkoen F, Ruigrok T, Voogd J. A new combination of WGA-HRP anterograde tracing and GABA immunocytochemistry applied to afferents of the cat inferior olive at the ultrastructural level. Brain Res. 1988;447(2):369–75.

    Article  PubMed  Google Scholar 

  19. Ruigrok TJH, Voogd J. Cerebellar nucleo-olivary projections in the rat: an anterograde tracing study with Phaseolus vulgaris-leucoagglutinin (PHA-L). J Comp Neurol. 1990;298(3):315–33.

    Article  CAS  PubMed  Google Scholar 

  20. Fredette BJ, Adams JC, Mugnaini E. GABAergic neurons in the mammalian inferior olive and ventral medulla detected by glutamate decarboxylase immunocytochemistry. J Comp Neurol. 1992;321(4):501–14.

    Article  CAS  PubMed  Google Scholar 

  21. Sears LL, Steinmetz JE. Dorsal accessory inferior olive activity diminishes during acquisition of the rabbit classically conditioned eyelid response. Brain Res. 1991;545(1–2):114–22.

    Article  CAS  PubMed  Google Scholar 

  22. Kim JJ, Krupa DJ, Thompson RF. Inhibitory cerebello-olivary projections and blocking effect in classical conditioning. Science. 1998;279(5350):570–3.

    Article  CAS  PubMed  Google Scholar 

  23. Hofstotter C, Mintz M, Verschure PFMJ. The cerebellum in action: a simulation and robotics study. Eur J Neurosci. 2002;16:1361–76.

    Article  PubMed  Google Scholar 

  24. Bengtsson F, Jirenhed DA, Svensson P, Hesslow G. Extinction of conditioned blink responses by cerebello-olivary pathway stimulation. Neuroreport. 2007;18(14):1479–82.

    Article  PubMed  Google Scholar 

  25. Rasmussen A, Jirenhed D, Hesslow G. Simple and complex spike firing patterns in Purkinje cells during classical conditioning. Cerebellum. 2008;7(4):563–6.

    Article  PubMed  Google Scholar 

  26. de Zeeuw CI, Ruigrok TJ, Schalekamp MP, Boesten AJ, Voogd J. Ultrastructural study of the cat hypertrophic inferior olive following anterograde tracing, immunocytochemistry, and intracellular labeling. Eur J Morphol. 1990;28(2–4):240–55.

    PubMed  Google Scholar 

  27. Ruigrok TTH, De Zeeuw CI, Voogd J. Hypertrophy of inferior olivary neurons: a degenerative, regenerative or plasticity phenomenon. Eur J Morphol. 1990;28(2–4):224–39.

    CAS  PubMed  Google Scholar 

  28. Lang EJ. GABAergic and glutamatergic modulation of spontaneous and motor-cortex-evoked complex spike activity. J Neurophysiol. 2002;87(4):1993–2008.

    CAS  PubMed  Google Scholar 

  29. Leznik E, Makarenko V, Llinas R. Electrotonically mediated oscillatory patterns in neuronal ensembles: an in vitro voltage-dependent dye-imaging study in the inferior olive. J Neurosci. 2002;22(7):2804–15.

    PubMed  Google Scholar 

  30. Leznik E, Llinas R. Role of gap junctions in synchronized neuronal oscillations in the inferior olive. J Neurophysiol. 2005;94(4):2447–56.

    Article  PubMed  Google Scholar 

  31. Placantonakis DG, Bukovsky AA, Aicher SA, Kiem H, Welsh JP. Continuous electrical oscillations emerge from a coupled network: a study of the inferior olive using lentiviral knockdown of connexin36. J Neurosci. 2006;26(19):5008–16.

    Article  CAS  PubMed  Google Scholar 

  32. Khosrovani S, Van Der Giessen RS, De Zeeuw CI, De Jeu MTG. In vivo mouse inferior olive neurons exhibit heterogeneous subthreshold oscillations and spiking patterns. Proc Natl Acad Sci U S A. 2007;104(40):15911–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Best AR, Regehr WG. Inhibitory regulation of electrically coupled neurons in the inferior olive is mediated by asynchronous release of GABA. Neuron. 2009;62(4):555–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kawato M, Kuroda S, Schweighofer N. Cerebellar supervised learning revisited: biophysical modeling and degrees-of-freedom control. Curr Opin Neurobiol. 2011;21(5):791–800.

    Article  CAS  PubMed  Google Scholar 

  35. Onizuka M, Hoang H, Kawato M, Tokuda IT, Schweighofer N, Katori Y, et al. Solution to the inverse problem of estimating gap-junctional and inhibitory conductance in inferior olive neurons from the spike trains by network model simulation. Neural Netw. 2013;47:51–63.

    Article  PubMed  Google Scholar 

  36. Kitai S, McCrea R, Preston R, Bishop G. Electrophysiological and horseradish peroxidase studies of precerebellar afferents to the nucleus interpositus anterior. I. Climbing fiber system. Brain Res. 1977;122(2):197–214.

    Article  CAS  PubMed  Google Scholar 

  37. De Zeeuw CI, Van Alpehn AM, Hawkins RK, Ruigrok TJH. Climbing fibre collaterals contact neurons in the cerebellar nuclei that provide a GABAergic feedback to the inferior olive. Neuroscience. 1997;80(4):981–6.

    Article  PubMed  Google Scholar 

  38. Witter L, Canto CB, Hoogland TM, De Gruijl JR, De Zeeuw CI. Strength and timing of motor responses mediated by rebound firing in the cerebellar nuclei after Purkinje cell activation. Front Neural Circ. 2013;7:133.

    Google Scholar 

  39. Nicholson DA, Freeman Jr JH. Developmental changes in eye-blink conditioning and neuronal activity in the inferior olive. J Neurosci. 2000;20(21):8218–26.

    CAS  PubMed  Google Scholar 

  40. Ruigrok TJH, Voogd J. Organization of projections from the inferior olive to the cerebellar nuclei in the rat. J Comp Neurol. 2000;426(2):209–28.

    Article  CAS  PubMed  Google Scholar 

  41. Mojtahedian S, Kogan DR, Kanzawa SA, Thompson RF, Lavond DG. Dissociation of conditioned eye and limb responses in the cerebellar interpositus. Physiol Behav. 2007;91:9–14.

    Article  CAS  PubMed  Google Scholar 

  42. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 4th ed. New York: Academic Press; 1998.

  43. Armstrong DM, Eccles JC, Harvey RJ, Matthews PBC. Responses in the dorsal accessory olive of the cat to stimulation of hind limb afferents. J Physiol. 1968;194(1):125–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Nicholson DA, Freeman Jr JH. Developmental changes in evoked Purkinje cell complex spike responses. J Neurophysiol. 2003;90(4):2349–57.

    Article  PubMed  Google Scholar 

  45. Wise AK, Cerminara NL, Marple-Horvat DE, Apps R. Mechanisms of synchronous activity in cerebellar Purkinje cells. J Physiol. 2010;588(13):2373–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Svensson P, Bengtsson F, Hesslow G. Cerebellar inhibition of inferior olivary transmission in the decerebrate ferret. Exp Brain Res. 2006;168(1):241–53.

    Article  CAS  PubMed  Google Scholar 

  47. Hesslow G, Ivarsson M. Inhibition of the inferior olive during conditioned responses in the decerebrate ferret. Exp Brain Res. 1996;110(1):36–46.

    Article  CAS  PubMed  Google Scholar 

  48. Bengtsson F, Ekerot C, Jorntell H. In vivo analysis of inhibitory synaptic inputs and rebounds in deep cerebellar nuclear neurons. PLoS ONE. 2011;6(4):e18822.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Welsh JP, Schwartz C. Multielectrode recording from the cerebellum. In: Nicolelis MAL, editor. Methods for neural ensemble recordings. Boca Raton: CRC; 1999. p. 79–100.

    Google Scholar 

  50. Gauck V, Jaeger D. The control of rate and timing of spikes in the deep cerebellar nuclei by inhibition. J Neurosci. 2000;20(8):3006–16.

    CAS  PubMed  Google Scholar 

  51. Bengtsson F, Svensson P, Hesslow G. Feedback control of Purkinje cell activity by the cerebello-olivary pathway. Eur J Neurosci. 2004;20(11):2999–3005.

    Article  CAS  PubMed  Google Scholar 

  52. Mathy A, Ho SSN, Davie JT, Duguid IC, Clark BA, Hausser M. Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron. 2009;62(3):388–99.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Perciavalle V, Apps R, Bracha V, Delgado-García JM, Gibson AR, Leggio M, et al. Consensus paper: current views on the role of cerebellar interpositus nucleus in movement control and emotion. Cerebellum. 2013;12(5):738–57.

    Article  PubMed  Google Scholar 

  54. Blenkinsop TA, Lang EJ. Synaptic action of the olivocerebellar system on cerebellar nuclear spike activity. J Neurosci. 2011;31(41):14708–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Simons DJ. Response properties of vibrissa units in rat SI somatosensory neocortex. J Neurophysiol. 1978;41(3):798–820.

    CAS  PubMed  Google Scholar 

  56. Lichtenstein S, Carvell G, Simons D. Responses of rat trigeminal ganglion neurons to movements of vibrissae in different directions. Somatosens Mot Res. 1990;7(1):47–65.

    Article  CAS  PubMed  Google Scholar 

  57. Meng ID, Hu JW, Benetti AP, Bereiter DA. Encoding of corneal input in two distinct regions of the spinal trigeminal nucleus in the rat: cutaneous receptive field properties, responses to thermal and chemical stimulation, modulation by diffuse noxious inhibitory controls, and projections to the parabrachial area. J Neurophysiol. 1997;77(1):43–56.

    CAS  PubMed  Google Scholar 

  58. Cairns BE, McErlane SA, Fragoso MC, Soja PJ. Tooth pulp—and facial hair mechanoreceptor—evoked responses of trigeminal sensory neurons are attenuated during ketamine anesthesia. Anesthesiology. 1999;91(4):1025–35.

    Article  CAS  PubMed  Google Scholar 

  59. Weiss C, Houk JC, Gibson AR. Inhibition of sensory responses of cat inferior olive neurons produced by stimulation of red nucleus. J Neurophysiol. 1990;64(4):1170–85.

    CAS  PubMed  Google Scholar 

  60. Teune TM, der Burg J, Ruigrok TJH. Cerebellar projections to the red nucleus and inferior olive originate from separate populations of neurons in the rat: a non-fluorescent double labeling study. Brain Res. 1995;673(2):313–9.

    Article  CAS  PubMed  Google Scholar 

  61. Horn KM, Hamm TM, Gibson AR. Red nucleus stimulation inhibits within the inferior olive. J Neurophysiol. 1998;80(6):3127–36.

    CAS  PubMed  Google Scholar 

  62. Bull MS, Berkley KJ. Cerebellar projections to the somatic pretectum in the cat. Somatosens Mot Res. 1991;8(2):117–26.

    Article  CAS  PubMed  Google Scholar 

  63. Zagon A, Terenzi M, Roberts M. Direct projections from the anterior pretectal nucleus to the ventral medulla oblongata in rats. Neuroscience. 1995;65(1):253–72.

    Article  CAS  PubMed  Google Scholar 

  64. Nakamura H, Wu R, Watanabe K, Onozuka M, Itoh K. Projections of glutamate decarboxylase positive and negative cerebellar neurons to the pretectum in the cat. Neurosci Lett. 2006;403(1):30–4.

    Article  CAS  PubMed  Google Scholar 

  65. Batini C, Buisseret-Delmas C, Compoint C, Daniel H. The GABAergic neurones of the cerebellar nuclei in the rat: projections to the cerebellar cortex. Neurosci Lett. 1989;99(3):251–6.

    Article  CAS  PubMed  Google Scholar 

  66. Batini C, Compoint C, Buisseret-Delmas C, Daniel H, Guegan M. Cerebellar nuclei and the nucleocortical projections in the rat: retrograde tracing coupled to GABA and glutamate immunohistochemistry. J Comp Neurol. 1992;315(1):74–84.

    Article  CAS  PubMed  Google Scholar 

  67. Uusisaari M, Knöpfel T. Functional classification of neurons in the mouse lateral cerebellar nuclei. Cerebellum. 2011;10(4):637–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Armstrong DM, Rawson JA. Activity patterns of cerebellar cortical neurones and climbing fibre afferents in the awake cat. J Physiol. 1979;289(1):425–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Gellman R, Houk JC, Gibson AR. Somatosensory properties of the inferior olive of the cat. J Comp Neurol. 1983;215(2):228–43.

    Article  CAS  PubMed  Google Scholar 

  70. Lang EJ, Sugihara I, Welsh JP, Llinás R. Patterns of spontaneous Purkinje cell complex spike activity in the awake rat. J Neurosci. 1999;19(7):2728–39.

    CAS  PubMed  Google Scholar 

  71. Bosman LW, Koekkoek SK, Shapiro J, Rijken BF, Zandstra F, Van Der Ende B, et al. Encoding of whisker input by cerebellar Purkinje cells. J Physiol. 2010;588(19):3757–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Bengtsson F, Jörntell H. Ketamine and xylazine depress sensory-evoked parallel fiber and climbing fiber responses. J Neurophysiol. 2007;98(3):1697–705.

    Article  CAS  PubMed  Google Scholar 

  73. Loewenstein Y, Mahon S, Chadderton P, Kitamura K, Sompolinsky H, Yarom Y, et al. Bistability of cerebellar Purkinje cells modulated by sensory stimulation. Nat Neurosci. 2005;8(2):202–11.

    Article  CAS  PubMed  Google Scholar 

  74. Schonewille M, Khosrovani S, Winkelman BH, Hoebeek FE, De Jeu MT, Larsen IM, et al. Purkinje cells in awake behaving animals operate at the upstate membrane potential. Nat Neurosci. 2006;9(4):459–61.

    Article  CAS  PubMed  Google Scholar 

  75. De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekkoek SKE, Ruigrok TJH. Microcircuitry and function of the inferior olive. Trends Neurosci. 1998;21(9):391–400.

    Article  PubMed  Google Scholar 

  76. Medina JF, Lisberger SG. Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys. Nat Neurosci. 2008;11(10):1185–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Jacobson GA, Rokni D, Yarom Y. A model of the olivo-cerebellar system as a temporal pattern generator. Trends Neurosci. 2008;31(12):617–25.

    Article  CAS  PubMed  Google Scholar 

  78. Marshall SP, Lang EJ. Local changes in the excitability of the cerebellar cortex produce spatially restricted changes in complex spike synchrony. J Neurosci. 2009;29(45):14352–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Braitenberg V, Heck D, Sultan F. The detection and generation of sequences as a key to cerebellar function: experiments and theory. Behav Brain Sci. 1997;20:229–77.

    Article  CAS  PubMed  Google Scholar 

  80. Penhune VB, Doyon J. Cerebellum and M1 interaction during early learning of timed motor sequences. NeuroImage. 2005;26(3):801–12.

    Article  CAS  PubMed  Google Scholar 

  81. Stefanescu M, Thürling M, Maderwald S, Wiestler T, Ladd M, Diedrichsen J, et al. A 7 T fMRI study of cerebellar activation in sequential finger movement tasks. Exp Brain Res. 2013;228:1–12.

    Article  Google Scholar 

  82. Andersson G. Mutual inhibition between olivary cell groups projecting to different cerebellar microzones in the cat. Exp Brain Res. 1984;54(2):293–303.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Aryeh Taub, Ari Magal, and Dor Konforty for valuable discussions during the preparation of this manuscript. The research leading to these results has received funding from the European Community’s Seventh Framework Program (FP7) under grant agreement #216809, the Converging Technologies (ISF) research grant #1709/07, and ISF grant #390/12 to M.M.; R.H. was also funded by the Dan David Prize Scholarship and the Michael Myslobodsky Foundation.

Conflict of Interest

The authors declare that there is no conflict of interest, financial or otherwise, that might bias this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roni Hogri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hogri, R., Segalis, E. & Mintz, M. Cerebellar Inhibitory Output Shapes the Temporal Dynamics of Its Somatosensory Inferior Olivary Input. Cerebellum 13, 452–461 (2014). https://doi.org/10.1007/s12311-014-0558-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-014-0558-3

Keywords

Navigation