Skip to main content
Log in

Gain Control of Synaptic Response Function in Cerebellar Nuclear Neurons by a Calcium-Activated Potassium Conductance

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Small conductance Ca2+-activated potassium (SK) current provides an important modulator of excitatory synaptic transmission, which undergoes plastic regulation via multiple mechanisms. We examined whether inhibitory input processing is also dependent on SK current in the cerebellar nuclei (CN) where inhibition provides the only route of information transfer from the cerebellar cortical Purkinje cells. We employed dynamic clamping in conjunction with computer simulations to address this question. We found that SK current plays a critical role in the inhibitory synaptic control of spiking output. Specifically, regulation of SK current density resulted in a gain control of spiking output, such that low SK current promoted large output signaling for large inhibitory cell input fluctuations due to Purkinje cell synchronization. In contrast, smaller nonsynchronized Purkinje cell input fluctuations were not amplified. Regulation of SK density in the CN therefore would likely lead to important consequences for the transmission of synchronized Purkinje cell activity to the motor system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Palkovits M, Mezey E, Hamori J, Szentagothai J. Quantitative histological analysis of the cerebellar nuclei in the cat. I. Numerical data on cells and synapses. Exp Brain Res. 1977;28:189–209.

    PubMed  CAS  Google Scholar 

  2. Jaeger D. Mini-review: synaptic integration in the cerebellar nuclei—perspectives from dynamic clamp and computer simulation studies. Cerebellum. 2011;10:659–66.

    Article  PubMed  Google Scholar 

  3. Walter JT, Khodakhah K. The linear computational algorithm of cerebellar Purkinje cells. J Neurosci. 2006;26:12861–72.

    Article  PubMed  CAS  Google Scholar 

  4. Walter JT, Khodakhah K. The advantages of linear information processing for cerebellar computation. Proc Natl Acad Sci U S A. 2009;106:4471–6.

    Article  PubMed  CAS  Google Scholar 

  5. Gauck V, Jaeger D. The control of rate and timing of spikes in the deep cerebellar nuclei by inhibition. J Neurosci. 2000;20:3006–16.

    PubMed  CAS  Google Scholar 

  6. De Zeeuw CI, Hoebeek FE, Bosman LWJ, Schonewille M, Witter L, Koekkoek SK. Spatiotemporal firing patterns in the cerebellum. Nat Rev Neurosci. 2011;12:327–44.

    Article  PubMed  Google Scholar 

  7. Shin SL, De Schutter E. Dynamic synchronization of Purkinje cell simple spikes. J Neurophysiol. 2006;96:3485–91.

    Article  PubMed  Google Scholar 

  8. Jahnsen H. Electrophysiological characteristics of neurones in the guinea-pig deep cerebellar nuclei in vitro. J Physiol. 1986;372:129–47.

    PubMed  CAS  Google Scholar 

  9. Uusisaari M, Obata K, Knopfel T. Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol. 2007;97:901–11.

    Article  PubMed  CAS  Google Scholar 

  10. Molineux ML, Mehaffey WH, Tadayonnejad R, Anderson D, Tennent AF, Turner RW. Ionic factors governing rebound burst phenotype in rat deep cerebellar neurons. J Neurophysiol. 2008;100:2684–701.

    Article  PubMed  Google Scholar 

  11. Molineux ML, McRory JE, McKay BE, Hamid J, Mehaffey WH, Rehak R, et al. Specific t-type calcium channel isoforms are associated with distinct burst phenotypes in deep cerebellar nuclear neurons. Proc Natl Acad Sci U S A. 2006;103:5555–60.

    Article  PubMed  CAS  Google Scholar 

  12. Alvina K, Ellis-Davies G, Khodakhah K. T-type calcium channels mediate rebound firing in intact deep cerebellar neurons. Neuroscience. 2009;158:635–41.

    Article  PubMed  CAS  Google Scholar 

  13. Sangrey T, Jaeger D. Multiple components of rebound spiking in deep cerebellar nucleus neurons. Eur J Neurosci. 2010;32:1646–57.

    Article  PubMed  Google Scholar 

  14. Hoebeek FE, Witter L, Ruigrok TJ, De Zeeuw CI. Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei. Proc Natl Acad Sci U S A. 2010;107:8410–5.

    Article  PubMed  CAS  Google Scholar 

  15. Bengtsson F, Ekerot CF, Jorntell H. In vivo analysis of inhibitory synaptic inputs and rebounds in deep cerebellar nuclear neurons. PLoS One. 2011;6:e18822.

    Google Scholar 

  16. Lang EJ, Sugihara I, Welsh JP, Llinas R. Patterns of spontaneous Purkinje cell complex spike activity in the awake rat. J Neurosci. 1999;19:2728–39.

    PubMed  CAS  Google Scholar 

  17. Schultz SR, Kitamura K, Post-Uiterweer A, Krupic J, Hausser M. Spatial pattern coding of sensory information by climbing fiber-evoked calcium signals in networks of neighboring cerebellar Purkinje cells. J Neurosci. 2009;29:8005–15.

    Article  PubMed  CAS  Google Scholar 

  18. Ozden I, Sullivan MR, Lee HM, Wang SSH. Reliable coding emerges from coactivation of climbing fibers in microbands of cerebellar purkinje neurons. J Neurosci. 2009;29:10463–73.

    Article  PubMed  CAS  Google Scholar 

  19. Aizenman CD, Linden DJ. Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. J Neurophysiol. 1999;82:1697–709.

    PubMed  CAS  Google Scholar 

  20. Raman IM, Gustafson AE, Padgett D. Ionic currents and spontaneous firing in neurons isolated from the cerebellar nuclei. J Neurosci. 2000;20:9004–16.

    PubMed  CAS  Google Scholar 

  21. Magee JC. Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal ca1 pyramidal neurons. J Neurosci. 1998;18:7613–24.

    PubMed  CAS  Google Scholar 

  22. Chan CS, Shigemoto R, Mercer JN, Surmeier DJ. HCN2 and HCN1 channels govern the regularity of autonomous pacemaking and synaptic resetting in globus pallidus neurons. J Neurosci. 2004;24:9921–32.

    Article  PubMed  CAS  Google Scholar 

  23. Wolfart J, Roeper J. Selective coupling of t-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. J Neurosci. 2002;22:3404–13.

    PubMed  CAS  Google Scholar 

  24. Deister CA, Chan CS, Surmeier DJ, Wilson CJ. Calcium-activated SK channels influence voltage-gated ion channels to determine the precision of firing in globus pallidus neurons. J Neurosci. 2009;29:8452–61.

    Article  PubMed  CAS  Google Scholar 

  25. Canavier CC, Landry RS. An increase in AMPA and a decrease in SK conductance increase burst firing by different mechanisms in a model of a dopamine neuron in vivo. J Neurophysiol. 2006;96:2549–63.

    Article  PubMed  CAS  Google Scholar 

  26. Gauck V, Jaeger D. The contribution of NMDA and AMPA conductances to the control of spiking in neurons of the deep cerebellar nuclei. J Neurosci. 2003;23:8109–18.

    PubMed  CAS  Google Scholar 

  27. Person AL, Raman IM. Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature. 2012;481:502–6.

    Article  CAS  Google Scholar 

  28. Pugh JR, Raman IM. GABAA receptor kinetics in the cerebellar nuclei: evidence for detection of transmitter from distant release sites. Biophys J. 2005;88:1740–54.

    Article  PubMed  CAS  Google Scholar 

  29. Anchisi D, Scelfo B, Tempia F. Postsynaptic currents in deep cerebellar nuclei. J Neurophysiol. 2001;85:323–31.

    PubMed  CAS  Google Scholar 

  30. Steuber V, Schultheiss NW, Silver RA, De Schutter E, Jaeger D. Determinants of synaptic integration and heterogeneity in rebound firing explored with data driven models of deep cerebellar nucleus cells. J Comput Neurosci. 2011;30:633–58.

    Article  PubMed  Google Scholar 

  31. Steuber V, De Schutter E, Jaeger D. Passive models of neurons in the deep cerebellar nuclei: the effect of reconstruction errors. Neurocomputing. 2004;58–60:563–8.

    Article  Google Scholar 

  32. Jahnsen H. Extracellular activation and membrane conductances of neurones in the guinea-pig deep cerebellar nuclei in vitro. J Physiol. 1986;372:149–68.

    PubMed  CAS  Google Scholar 

  33. Llinas R, Muhlethaler M. Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. J Physiol. 1988;404:241–58.

    PubMed  CAS  Google Scholar 

  34. Bower J, Beeman D. The book of genesis. New York: Springer; 1997.

    Google Scholar 

  35. Lin RJ, Jaeger D. Using computer simulations to determine the limitations of dynamic clamp stimuli applied at the soma in mimicking distributed conductance sources. J Neurophysiol. 2011;105:2610–24.

    Article  PubMed  Google Scholar 

  36. Feng S, Jaeger D. The role of SK calcium-dependent potassium currents in regulating the activity of deep cerebellar nucleus neurons: a dynamic clamp study. Cerebellum. 2008;7:542–6.

    Article  PubMed  CAS  Google Scholar 

  37. Bennett BD, Callaway JC, Wilson CJ. Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons. J Neurosci. 2000;20:8493–503.

    PubMed  CAS  Google Scholar 

  38. Nedergaard S, Flatman JA, Engberg I. Nifedipine-conotoxin-sensitive and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra-pars-compacta neurons. J Physiol Lond. 1993;466:727–47.

    PubMed  CAS  Google Scholar 

  39. De Waele C, Serafin M, Khateb A, Yabe T, Vidal PP, Muhlethaler M. Medial vestibular nucleus in the guinea-pig—apamin-induced rhythmic burst firing—an in-vitro and in-vivo study. Exp Brain Res. 1993;95:213–22.

    Article  PubMed  Google Scholar 

  40. McKay BE, McRory JE, Molineux ML, Hamid J, Snutch TP, Zamponi GW, et al. Ca(v)3 t-type calcium channel isoforms differentially distribute to somatic and dendritic compartments in rat central neurons. Eur J Neurosci. 2006;24:2581–94.

    Article  PubMed  Google Scholar 

  41. Alvina K, Khodakhah K. Selective regulation of spontaneous activity of neurons of the deep cerebellar nuclei by n-type calcium channels in juvenile rats. J Physiol Lond. 2008;586:2523–38.

    Article  PubMed  CAS  Google Scholar 

  42. Giessel AJ, Sabatini BL. M1 muscarinic receptors boost synaptic potentials and calcium influx in dendritic spines by inhibiting postsynaptic SK channels. Neuron. 2010;68:936–47.

    Article  PubMed  CAS  Google Scholar 

  43. Maylie J, Adelman JP. Cholinergic signaling through synaptic SK channels: it's a protein kinase but which one? Neuron. 2010;68:809–11.

    Article  PubMed  CAS  Google Scholar 

  44. Womack MD, Chevez C, Khodakhah K. Calcium-activated potassium channels are selectively coupled to p/q-type calcium channels in cerebellar purkinje neurons. J Neurosci. 2004;24:8818–22.

    Article  PubMed  CAS  Google Scholar 

  45. Hosy E, Piochon C, Teuling E, Rinaldo L, Hansel C. SK2 channel expression and function in cerebellar Purkinje cells. J Physiol Lond. 2011;589:3433–40.

    Article  PubMed  CAS  Google Scholar 

  46. Belmeguenai A, Hosy E, Bengtsson F, Pedroarena CM, Piochon C, Teuling E, et al. Intrinsic plasticity complements long-term potentiation in parallel fiber input gain control in cerebellar Purkinje cells. J Neurosci. 2010;30:13630–43.

    Article  PubMed  CAS  Google Scholar 

  47. Schonewille M, Belmeguenai A, Koekkoek SK, Houtman SH, Boele HJ, van Beugen BJ, et al. Purkinje cell-specific knockout of the protein phosphatase PP2B impairs potentiation and cerebellar motor learning. Neuron. 2010;67:618–28.

    Article  PubMed  CAS  Google Scholar 

  48. Bond CT, Herson PS, Strassmaier T, Hammond R, Stackman R, Maylie J, et al. Small conductance Ca2+-activated k+ channel knock-out mice reveal the identity of calcium-dependent afterhyperpolarization currents. J Neurosci. 2004;24:5301–6.

    Article  PubMed  CAS  Google Scholar 

  49. Bond CT, Maylie J, Adelman JP. Sk channels in excitability, pacemaking and synaptic integration. Curr Opin Neurobiol. 2005;15:305–11.

    Article  PubMed  CAS  Google Scholar 

  50. De Schutter E, Steuber V. Patterns and pauses in Purkinje cell simple spike trains: experiments, modeling and theory. Neuroscience. 2009;162:816–26.

    Article  PubMed  Google Scholar 

  51. Destexhe A, Pare D. Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol. 1999;81:1531–47.

    PubMed  CAS  Google Scholar 

  52. Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ. Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience. 2001;107:13–24.

    Article  PubMed  CAS  Google Scholar 

  53. Alvina K, Walter JT, Kohn A, Ellis-Davies G, Khodakhah K. Questioning the role of rebound firing in the cerebellum. Nat Neurosci. 2008;11:1256–8.

    Article  PubMed  CAS  Google Scholar 

  54. Tadayonnejad R, Anderson D, Molineux ML, Mehaffey WH, Jayasuriya K, Turner RW. Rebound discharge in deep cerebellar nuclear neurons in vitro. Cerebellum. 2010;9:352–74.

    Article  PubMed  Google Scholar 

  55. Tadayonnejad R, Mehaffey WH, Anderson D, Turner RW. Reliability of triggering postinhibitory rebound bursts in deep cerebellar neurons. Channels (Austin). 2009;3:149–55.

    Article  CAS  Google Scholar 

  56. Medina JF, Lisberger SG. Encoding and decoding of learned smooth-pursuit eye movements in the floccular complex of the monkey cerebellum. J Neurophysiol. 2009;102:2039–54.

    Article  PubMed  Google Scholar 

  57. Cao Y, Maran SK, Dhamala M, Jaeger D, Heck DH. Behavior-related pauses in simple-spike activity of mouse Purkinje cells are linked to spike rate modulation. J Neurosci. 2012;32:8678–85.

    Article  PubMed  CAS  Google Scholar 

  58. Sourdet V, Russier M, Daoudal G, Ankri N, Debanne D. Long-term enhancement of neuronal excitability and temporal fidelity mediated by metabotropic glutamate receptor subtype 5. J Neurosci. 2003;23:10238–48.

    PubMed  CAS  Google Scholar 

  59. Turrigiano GG, Nelson SB. Hebb and homeostasis in neuronal plasticity. Curr Opin Neurobiol. 2000;10:358–64.

    Article  PubMed  CAS  Google Scholar 

  60. Marder E, Prinz AA. Current compensation in neuronal homeostasis. Neuron. 2003;37:2–4.

    Article  PubMed  CAS  Google Scholar 

  61. Brickley SG, Revilla V, Cull-Candy SG, Wisden W, Farrant M. Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature. 2001;409:88–92.

    Article  PubMed  CAS  Google Scholar 

  62. Pedroarena C. BK and KV3.1 potassium channels control different aspects of deep cerebellar nuclear neurons action potentials and spiking activity. Cerebellum. 2011;10:647–58.

    Article  PubMed  CAS  Google Scholar 

  63. Euler T, Denk W. Dendritic processing. Curr Opin Neurobiol. 2001;11:415–22.

    Article  PubMed  CAS  Google Scholar 

  64. Eilers J, Konnerth A. Dendritic signal integration [review] [55 refs]. Curr Opin Neurobiol. 1997;7:385–90.

    Article  PubMed  CAS  Google Scholar 

  65. Johnston D, Magee JC, Colbert CM, Christie BR. Active properties of neuronal dendrites. Annu Rev Neurosci. 1996;19:165–86.

    Article  PubMed  CAS  Google Scholar 

  66. London M, Hausser M. Dendritic computation. Annu Rev Neurosci. 2005;28:503–32.

    Article  PubMed  CAS  Google Scholar 

  67. Beck H, Yaari Y. Plasticity of intrinsic neuronal properties in CNS disorders. Nat Rev Neurosci. 2008;9:357–69.

    Article  PubMed  CAS  Google Scholar 

  68. Hoebeek FE, Stahl JS, van Alphen AM, Schonewille M, Luo C, Rutteman M, et al. Increased noise level of Purkinje cell activities minimizes impact of their modulation during sensorimotor control. Neuron. 2005;45:953–65.

    Article  PubMed  CAS  Google Scholar 

  69. Levin SI, Khaliq ZM, Aman TK, Grieco TM, Kearney JA, Raman IM, et al. Impaired motor function in mice with cell-specific knockout of sodium channel Scn8A (Na(v)1.6) in cerebellar Purkinje neurons and granule cells. J Neurophysiol. 2006;96:785–93.

    Article  PubMed  CAS  Google Scholar 

  70. Sausbier M, Hu H, Arntz C, Feil S, Kamm S, Adelsberger H, et al. Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2+-activated k+ channel deficiency. Proc Natl Acad Sci U S A. 2004;101:9474–8.

    Article  PubMed  CAS  Google Scholar 

  71. Cheron G, Sausbier M, Sausbier U, Neuhuber W, Ruth P, Dan B, Servais L. BK channels control cerebellar purkinje and golgi cell rhythmicity in vivo. Plos One. 2009;4:e7991.

    Google Scholar 

  72. Calderon DP, Fremont R, Kraenzlin F, Khodakhah K. The neural substrates of rapid-onset dystonia-parkinsonism. Nat Neurosci. 2011;14:357–65.

    Article  PubMed  CAS  Google Scholar 

  73. Jinnah HA, Hess EJ, LeDoux MS, Sharma N, Baxter MG, DeLong MR. Rodent models for dystonia research: characteristics, evaluation, and utility. Mov Disord. 2005;20:283–92.

    Article  PubMed  CAS  Google Scholar 

  74. LeDoux MS, Lorden JF. Abnormal spontaneous and harmaline-stimulated Purkinje cell activity in the awake genetically dystonic rat. Exp Brain Res. 2002;145:457–67.

    Article  PubMed  Google Scholar 

  75. LeDoux MS. Animal models of dystonia: lessons from a mutant rat. Neurobiol Dis. 2011;42:152–61.

    Article  PubMed  Google Scholar 

  76. Walter JT, Alvina K, Womack MD, Chevez C, Khodakhah K. Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci. 2006;9:389–97.

    Article  PubMed  CAS  Google Scholar 

  77. Alvina K, Khodakhah K. The therapeutic mode of action of 4-aminopyridine in cerebellar ataxia. J Neurosci. 2010;30:7258–68.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the national Institute of Mental Health R01-MH065634 and National Institute of Neurological Disorder and Stroke R21 NS074296 to Dieter Jaeger

Conflict of Interest

The authors have no financial or personal relationships that might bias this work, such as consultancies, stock ownership, equity interests, or patent-licensing arrangements. The writing was entirely carried out by the authors without any additional help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Jaeger.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, S.S., Lin, R., Gauck, V. et al. Gain Control of Synaptic Response Function in Cerebellar Nuclear Neurons by a Calcium-Activated Potassium Conductance. Cerebellum 12, 692–706 (2013). https://doi.org/10.1007/s12311-013-0476-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-013-0476-9

Keywords

Navigation