Skip to main content
Log in

Mini-Review: Synaptic Integration in the Cerebellar Nuclei—Perspectives From Dynamic Clamp and Computer Simulation Studies

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The cerebellar nuclei (CN) process inhibition from Purkinje cells (PC) and excitation from mossy and climbing fiber collaterals. CN neurons in slices show intrinsic pacemaking activity, which is easily modulated by synaptic inputs. Our work using dynamic clamping and computer modeling shows that synchronicity between PC inputs is an important factor in determining spike rate and spike timing of CN neurons and that brief pauses in PC inputs provide a potent stimulus to trigger CN spikes. Excitatory input can equally control spike rate, but, due to a large slow, NMDA component also amplifies responses to inhibitory inputs. Intrinsic properties of CN neurons are well suited to provide prolonged responses to strong input transients and could be involved in motor pattern generation. One such specific mechanism is given by fast and slow rebound bursting. Nevertheless, we are just beginning to unravel synaptic integration in the CN, and the outcome of the work to date is best characterized by the generation of new specific questions that lend themselves to a combined experimental and computer modeling approach in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anguat P, Cicirata F. Cerebello-olivary projections in the rat. An autoradiographic study. Brain Behav Evol. 1982;21:24–33.

    Article  PubMed  CAS  Google Scholar 

  2. Fredette BJ, Mugnaini E. The GABAergic cerebello-olivary projection in the rat. Anat Embryol Berl. 1991;184:225–43.

    Article  PubMed  CAS  Google Scholar 

  3. Teune TM, van der Burg J, Ruigrok TJ. Cerebellar projections to the red nucleus and inferior olive originate from separate populations of neurons in the rat: a non-fluorescent double labeling study. Brain Res. 1995;673:313–9.

    Article  PubMed  CAS  Google Scholar 

  4. Teune TM, van der Burg J, van der Moer J, Voogd J, Ruigrok TJ. Topography of cerebellar nuclear projections to the brain stem in the rat. Prog Brain Res. 2000;124:141–72.

    Article  PubMed  CAS  Google Scholar 

  5. Caughell KA, Flumerfelt BA. The organisation of the cerebellorubral projection: an experiment study in the rat. J Comp Neurol. 1977;176:295–306.

    Article  PubMed  CAS  Google Scholar 

  6. Angaut P, Cicirata F, Serapide F. Topographic organization of the cerebellothalamic projections in the rat. An autoradiographic study. Neuroscience. 1985;15:389–401.

    Article  PubMed  CAS  Google Scholar 

  7. Asanuma C, Thach WR, Jones EG. Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Res. 1983;286:267–97.

    PubMed  CAS  Google Scholar 

  8. Mock M, Butovas S, Schwarz C. Functional unity of the ponto-cerebellum: Evidence that intrapontine communication is mediated by a reciprocal loop with the cerebellar nuclei. J Neurophysiol. 2006;95:3414–25.

    Article  PubMed  Google Scholar 

  9. Shinoda Y, Sugiuchi Y, Futami T, Izawa R. Axon collaterals of mossy fibers from the pontine nucleus in the cerebellar dentate nucleus. J Neurophysiol. 1992;67:547–60.

    PubMed  CAS  Google Scholar 

  10. Ruigrok TJ, Voogd J. Organization of projections from the inferior olive to the cerebellar nuclei in the rat. J Comp Neurol. 2000;426:209–28.

    Article  PubMed  CAS  Google Scholar 

  11. Van der Want JJ, Wiklund L, Guegan M, Ruigrok T, Voogd J. Anterograde tracing of the rat olivocerebellar system with Phaseolus vulgaris leucoagglutinin (PHA-L). Demonstration of climbing fiber collateral innervation of the cerebellar nuclei. J Comp Neurol. 1989;288:1–18.

    Article  PubMed  Google Scholar 

  12. Aizenman CD, Linden DJ. Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. J Neurophysiol. 1999;82:1697–709.

    PubMed  CAS  Google Scholar 

  13. Jahnsen H. Electrophysiological characteristics of neurones in the guinea-pig deep cerebellar nuclei in vitro. J Physiol. 1986;372:129–47.

    PubMed  CAS  Google Scholar 

  14. Raman IM, Bean BP. Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. J Neurosci. 1999;19:1663–74.

    PubMed  CAS  Google Scholar 

  15. Uusisaari M, Obata K, Knopfel T. Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol. 2007;97:901–11.

    Article  PubMed  CAS  Google Scholar 

  16. Gardner EP, Fuchs AF. Single-unit responses to natural vestibular stimuli and eye movements in deep cerebellar nuclei of the alert rhesus monkey. J Neurophysiol. 1975;38:627–49.

    PubMed  CAS  Google Scholar 

  17. Thach WT. Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J Neurophysiol. 1968;31:785–97.

    PubMed  CAS  Google Scholar 

  18. Thach WT. Discharge of cerebellar neurons related to two maintained postures and two prompt movements. I. Nuclear cell output. J Neurophysiol. 1970;33:527–36.

    PubMed  CAS  Google Scholar 

  19. Armstrong DM, Rawson JA. Responses of neurones in nucleus interpositus of the cerebellum to cutaneous nerve volleys in the awake cat. J Physiol. 1979;289:403–23.

    PubMed  CAS  Google Scholar 

  20. Gruart A, Delgado-Garcia JM. Discharge of identified deep cerebellar nuclei neurons related to eye blinks in the alert cat. Neuroscience. 1994;61:665–81.

    Article  PubMed  CAS  Google Scholar 

  21. Gruart A, Delgado-Garcia JM. Signalling properties of identified deep cerebellar nuclear neurons related to eye and head movements in the alert cat. J Physiol. 1994;478(Pt 1):37–54.

    PubMed  Google Scholar 

  22. Telgkamp P, Raman IM. Depression of inhibitory synaptic transmission between Purkinje cells and neurons of the cerebellar nuclei. J Neurosci. 2002;22:8447–57.

    PubMed  CAS  Google Scholar 

  23. Palkovits M, Mezey E, Hamori J, Szentagothai J. Quantitative histological analysis of the cerebellar nuclei in the cat. I. Numerical data on cells and synapses. Exp Brain Res. 1977;28:189–209.

    Article  PubMed  CAS  Google Scholar 

  24. Gauck V, Jaeger D. The control of rate and timing of spikes in the deep cerebellar nuclei by inhibition. J Neurosci. 2000;20:3006–16.

    PubMed  CAS  Google Scholar 

  25. De Schutter E, Steuber V. Patterns and pauses in Purkinje cell simple spike trains: experiments, modeling and theory. Neuroscience. 2009;162:816–26.

    Article  PubMed  Google Scholar 

  26. Shin SL, De Schutter E. Dynamic synchronization of Purkinje cell simple spikes. J Neurophysiol. 2006;96:3485–91.

    Article  PubMed  Google Scholar 

  27. Lang EJ, Sugihara I, Welsh JP, Llinas R. Patterns of spontaneous Purkinje cell complex spike activity in the awake rat. J Neurosci. 1999;19:2728–39.

    PubMed  CAS  Google Scholar 

  28. Ozden I, Sullivan MR, Lee HM, Wang SSH. Reliable coding emerges from coactivation of climbing fibers in microbands of Cerebellar Purkinje neurons. J Neurosci. 2009;29:10463–73.

    Article  PubMed  CAS  Google Scholar 

  29. Schultz SR, Kitamura K, Post-Uiterweer A, Krupic J, Hausser M. Spatial pattern coding of sensory information by climbing fiber-evoked calcium signals in networks of neighboring Cerebellar Purkinje cells. J Neurosci. 2009;29:8005–15.

    Article  PubMed  CAS  Google Scholar 

  30. Sato Y, Miura A, Fushiki H, Kawasaki T. Short-term modulation of cerebellar purkinje-cell activity after spontaneous climbing fiber input. J Neurophysiol. 1992;68:2051–62.

    CAS  Google Scholar 

  31. Holdefer RN, Houk JC, Miller LE. Movement-related discharge in the cerebellar nuclei persists after local injections of GABA(A) antagonists. J Neurophysiol. 2005;93:35–43.

    Article  PubMed  CAS  Google Scholar 

  32. Miller LE, Holdefer RN, Houk JC. The role of the cerebellum in modulating voluntary limb movement commands. Arch Ital Biol. 2002;140:175–83.

    PubMed  CAS  Google Scholar 

  33. Gauck V, Jaeger D. The contribution of NMDA and AMPA conductances to the control of spiking in neurons of the deep cerebellar nuclei. J Neurosci. 2003;23:8109–18.

    PubMed  CAS  Google Scholar 

  34. Anchisi D, Scelfo B, Tempia F. Postsynaptic currents in deep cerebellar nuclei. J Neurophysiol. 2001;85:323–31.

    PubMed  CAS  Google Scholar 

  35. Audinat E, Gahwiler BH, Knopfel T. Excitatory synaptic potentials in neurons of the deep nuclei in olivo- cerebellar slice cultures. Neuroscience. 1992;49:903–11.

    Article  PubMed  CAS  Google Scholar 

  36. Cull-Candy SG, Brickley SG, Misra C, Feldmeyer D, Momiyama A, Farrant M. NMDA receptor diversity in the cerebellum: identification of subunits contributing to functional receptors. Neuropharmacology. 1998;37:1369–80.

    Article  PubMed  CAS  Google Scholar 

  37. Molineux ML, McRory JE, McKay BE, Hamid J, Mehaffey WH, Rehak R, et al. Specific T-type calcium channel isoforms are associated with distinct burst phenotypes in deep cerebellar nuclear neurons. Proc Natl Acad Sci USA. 2006;103:5555–60.

    Article  PubMed  CAS  Google Scholar 

  38. Jahnsen H. Extracellular activation and membrane conductances of neurones in the guinea-pig deep cerebellar nuclei in vitro. J Physiol. 1986;372:149–68.

    PubMed  CAS  Google Scholar 

  39. Sangrey T, Jaeger D. Multiple components of rebound spiking in deep cerebellar nucleus neurons. Eur J Neurosci. 2010;32:1646–57.

    Article  PubMed  Google Scholar 

  40. Llinas R, Muhlethaler M. Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. J Physiol. 1988;404:241–58.

    PubMed  CAS  Google Scholar 

  41. Zheng N, Raman IM. Ca currents activated by spontaneous firing and synaptic disinhibition in neurons of the cerebellar nuclei. J Neurosci. 2009;29:9826–38.

    Article  PubMed  CAS  Google Scholar 

  42. Alvina K, Walter JT, Kohn A, Ellis-Davies G, Khodakhah K. Questioning the role of rebound firing in the cerebellum. Nat Neurosci. 2008;11:1256–8.

    Article  PubMed  CAS  Google Scholar 

  43. Hoebeek FE, Witter L, Ruigrok TJ, De Zeeuw CI. Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei. Proc Natl Acad Sci USA. 2010;107:8410–5.

    Article  PubMed  CAS  Google Scholar 

  44. Pedroarena CM. Mechanisms supporting transfer of inhibitory signals into the spike output of spontaneously firing cerebellar nuclear neurons in vitro. Cerebellum. 2010;9:67–76.

    Article  PubMed  Google Scholar 

  45. Tadayonnejad R, Mehaffey WH, Anderson D, Turner RW. Reliability of triggering postinhibitory rebound bursts in deep cerebellar neurons. Channels Austin. 2009;3:149–55.

    Article  PubMed  CAS  Google Scholar 

  46. Wetmore DZ, Mukamel EA, Schnitzer MJ. Lock-and-key mechanisms of cerebellar memory recall based on rebound currents. J Neurophysiol. 2008;100:2328–47.

    Article  PubMed  Google Scholar 

  47. Bengtsson FL, Carl-Fredrik E, & Jorntell H Convergence of Purkinje cell synaptic input to deep cerebellar nuclear neurons in vivo. Program No. 777.12. 2008 Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience, 2008. Online.

  48. Steuber V, Schultheiss NW, Silver RA, De Schutter E, Jaeger D. Determinants of synaptic integration and heterogeneity in rebound firing explored with data driven models of deep cerebellar nucleus cells. J Comput Neurosci. 2010. doi:10.1007/s10827-10010-10258-z. In press.

    PubMed  Google Scholar 

  49. Lee HHC, Walker JA, Williams JR, Goodier RJ, Payne JA, Moss SJ. Direct protein kinase C-dependent phosphorylation regulates the cell surface stability and activity of the potassium chloride cotransporter KCC2. J Biol Chem. 2007;282:29777–84.

    Article  PubMed  CAS  Google Scholar 

  50. Zhu L, Lovinger D, Delpire E. Cortical neurons lacking KCC2 expression show impaired regulation of intracellular chloride. J Neurophysiol. 2005;93:1557–68.

    Article  PubMed  CAS  Google Scholar 

  51. Aizenman CD, Manis PB, Linden DJ. Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron. 1998;21:827–35.

    Article  PubMed  CAS  Google Scholar 

  52. Ohyama T, Nores WL, Medina JF, Riusech FA, Mauk MD. Learning-induced plasticity in deep cerebellar nucleus. J Neurosci. 2006;26:12656–63.

    Article  PubMed  CAS  Google Scholar 

  53. Pugh JR, Raman IM. Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by postinhibitory rebound current. Neuron. 2006;51:113–23.

    Article  PubMed  CAS  Google Scholar 

  54. Pugh JR, Raman IM. Mechanisms of potentiation of mossy fiber EPSCs in the cerebellar nuclei by coincident synaptic excitation and inhibition. J Neurosci. 2008;28:10549–60.

    Article  PubMed  CAS  Google Scholar 

  55. Sastry BR, Morishita W, Yip S, Shew T. Gaba-ergic transmission in deep cerebellar nuclei. Prog Neurobiol. 1997;53:259–71.

    Article  PubMed  CAS  Google Scholar 

  56. Medina JF, Garcia KS, Nores WL, Taylor NM, Mauk MD. Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J Neurosci. 2000;20:5516–25.

    PubMed  CAS  Google Scholar 

  57. Berthier NE, Moore JW. Activity of deep cerebellar nuclear cells during classical conditioning of nictitating membrane extension in rabbits. Exp Brain Res. 1990;83:44–54.

    Article  PubMed  CAS  Google Scholar 

  58. Gruart A, Guillazo-Blanch G, Fernández-Mas R, Jiménez-Díaz L, Delgado-García JM. Cerebellar posterior interpositus nucleus as an enhancer of classically conditioned eyelid responses in alert cats. J Neurophysiol. 2000;84:2680–90.

    PubMed  CAS  Google Scholar 

  59. Sanchez-Campusano R, Gruart A, Delgado-Garcia JM. The cerebellar interpositus nucleus and the dynamic control of learned motor responses. J Neurosci. 2007;27:6620–32.

    Article  PubMed  CAS  Google Scholar 

  60. Sanchez-Campusano R, Gruart A, Delgado-Garcia JM. Dynamic associations in the cerebellar-motoneuron network during motor learning. J Neurosci. 2009;29:10750–63.

    Article  PubMed  CAS  Google Scholar 

  61. Hepp K, Henn V, Jaeger J. Eye movement related neurons in the cerebellar nuclei of the alert monkey. Exp Brain Res. 1982;45:253–64.

    Article  PubMed  CAS  Google Scholar 

  62. Milak MS, Bracha V, Bloedel JR. Relationship of simultaneously recorded cerebellar nuclear neuron discharge to the acquisition of a complex, operantly conditioned forelimb movement in cats. Exp Brain Res. 1995;105:325–30.

    Article  PubMed  CAS  Google Scholar 

  63. van Kan PL, Houk JC, Gibson AR. Output organization of intermediate cerebellum of the monkey. J Neurophysiol. 1993;69:57–73.

    PubMed  Google Scholar 

  64. Chen FP, Evinger C. Cerebellar modulation of trigeminal reflex blinks: interpositus neurons. J Neurosci. 2006;26:10569–76.

    Article  PubMed  CAS  Google Scholar 

  65. Porras-Garcia E, Sanchez-Campusano R, Martinez-Vargas D, Dominguez-del-Toro E, Cendelin J, Vozeh F, et al. Behavioral characteristics, associative learning capabilities, and dynamic association mapping in an animal model of cerebellar degeneration. J Neurophysiol. 2010;104:346–65.

    Article  PubMed  Google Scholar 

  66. Gibson AR, Horn KM, Stein JF, Van Kan PL. Activity of interpositus neurons during a visually guided reach. Can J Physiol Pharmacol. 1996;74:499–512.

    Article  PubMed  CAS  Google Scholar 

  67. Rowland NC, Jaeger D. Coding of tactile response properties in the rat deep cerebellar nuclei. J Neurophysiol. 2005;94:1236–51.

    Article  PubMed  Google Scholar 

  68. Rowland NC, Jaeger D. Responses to tactile stimulation in deep cerebellar nucleus neurons result from recurrent activation in multiple pathways. J Neurophysiol. 2008;99:704–17.

    Article  PubMed  Google Scholar 

  69. Courtemanche R, Lamarre Y. Local field potential oscillations in primate cerebellar cortex: synchronization with cerebral cortex during active and passive expectancy. J Neurophysiol. 2005;93:2039–52.

    Article  PubMed  Google Scholar 

  70. O’Connor SM, Berg RW, Kleinfeld D. Coherent electrical activity between vibrissa sensory areas of cerebellum and neocortex is enhanced during free whisking. J Neurophysiol. 2002;87:2137–48.

    PubMed  Google Scholar 

  71. Soteropoulos DS, Baker SN. Cortico-cerebellar coherence during a precision grip task in the monkey. J Neurophysiol. 2006;95:1194–206.

    Article  PubMed  Google Scholar 

  72. Ros H, Sachdev RNS, Yu Y, Sestan N, McCormick DA. Neocortical networks entrain neuronal circuits in cerebellar cortex. J Neurosci. 2009;29:10309–20.

    Article  PubMed  CAS  Google Scholar 

  73. Rowland NC, Goldberg JA, Jaeger D. Cortico-cerebellar coherence and causal connectivity during slow-wave activity. Neuroscience. 2010;166:698–711.

    Article  PubMed  CAS  Google Scholar 

  74. Matsushita M, Iwahori N. Structural organization of the interpositus and the dentate nuclei. Brain Res. 1971;35:17–36.

    Article  PubMed  CAS  Google Scholar 

  75. Uusisaari M, Knopfel T. GlyT2+ Neurons in the lateral cerebellar nucleus. Cerebellum. 2010;9:42–55.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by NIMH RO1 MH065634. I thank the organizers for the invitation to present at the stellar meeting on the cerebellar nuclei in Amsterdam in July 2010 and several generations of members in my lab for contributing to the work summarized here: Volker Gauck, Thomas Sangrey, Risa Lin, and Steven Feng. The modeling work was conducted together with Volker Steuber.

Conflict of Interest Statement

The author has no conflict of interest such as financial and personal relationships that might bias the work presented in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Jaeger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaeger, D. Mini-Review: Synaptic Integration in the Cerebellar Nuclei—Perspectives From Dynamic Clamp and Computer Simulation Studies. Cerebellum 10, 659–666 (2011). https://doi.org/10.1007/s12311-011-0248-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-011-0248-3

Keywords

Navigation