Skip to main content
Log in

BK and Kv3.1 Potassium Channels Control Different Aspects of Deep Cerebellar Nuclear Neurons Action Potentials and Spiking Activity

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Deep cerebellar nuclear neurons (DCNs) display characteristic electrical properties, including spontaneous spiking and the ability to discharge narrow spikes at high frequency. These properties are thought to be relevant to processing inhibitory Purkinje cell input and transferring well-timed signals to cerebellar targets. Yet, the underlying ionic mechanisms are not completely understood. BK and Kv3.1 potassium channels subserve similar functions in spike repolarization and fast firing in many neurons and are both highly expressed in DCNs. Here, their role in the abovementioned spiking characteristics was addressed using whole-cell recordings of large and small putative-glutamatergic DCNs. Selective BK channel block depolarized DCNs of both groups and increased spontaneous firing rate but scarcely affected evoked activity. After adjusting the membrane potential to control levels, the spike waveforms under BK channel block were indistinguishable from control ones, indicating no significant BK channel involvement in spike repolarization. The increased firing rate suggests that lack of DCN-BK channels may have contributed to the ataxic phenotype previously found in BK channel-deficient mice. On the other hand, block of Kv3.1 channels with low doses of 4-aminopyridine (20 μM) hindered spike repolarization and severely depressed evoked fast firing. Therefore, I propose that despite similar characteristics of BK and Kv3.1 channels, they play different roles in DCNs: BK channels control almost exclusively spontaneous firing rate, whereas DCN-Kv3.1 channels dominate the spike repolarization and enable fast firing. Interestingly, after Kv3.1 channel block, BK channels gained a role in spike repolarization, demonstrating how the different function of each of the two channels is determined in part by their co-expression and interplay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jahnsen H. Electrophysiological characteristics of neurones in the guinea-pig deep cerebellar nuclei in vitro. J Physiol. 1986;372:129–47.

    PubMed  CAS  Google Scholar 

  2. Thach WT. Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J Neurophysiol. 1968;31:785–97.

    PubMed  CAS  Google Scholar 

  3. LeDoux MS, Hurst DC, Lorden JF. Single-unit activity of cerebellar nuclear cells in the awake genetically dystonic rat. Neuroscience. 1998;86:533–45.

    Article  PubMed  CAS  Google Scholar 

  4. Hille B. Ion channels of excitable membranes. 3rd ed. Sunderland: Sinauer; 2001.

    Google Scholar 

  5. Weiser M, Bueno E, Sekirnjak C, Martone ME, Baker H, Hillman D, et al. The potassium channel subunit KV3.1b is localized to somatic and axonal membranes of specific populations of CNS neurons. J Neurosci. 1995;15:4298–314.

    PubMed  CAS  Google Scholar 

  6. Knaus HG, Schwarzer C, Koch RO, Eberhart A, Kaczorowski GJ, Glossmann H, et al. Distribution of high-conductance Ca(2+)-activated K+ channels in rat brain: targeting to axons and nerve terminals. J Neurosci. 1996;16:955–63.

    PubMed  CAS  Google Scholar 

  7. Sausbier M, Hu H, Arntz C, Feil S, Kamm S, Adelsberger H, et al. Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2+−activated K+ channel deficiency. Proc Natl Acad Sci USA. 2004;101:9474–8.

    Article  PubMed  CAS  Google Scholar 

  8. Sausbier U, Sausbier M, Sailer C, Arntz C, Knaus HG, Neuhuber W, et al. Ca2+–activated K+ channels of the BK-type in the mouse brain. Histochem Cell Biol. 2006;125:725–41.

    Article  PubMed  CAS  Google Scholar 

  9. Alonso-Espinaco V, Elezgarai I, Diez-Garcia J, Puente N, Knopfel T, Grandes P. Subcellular localization of the voltage-gated potassium channels Kv3.1b and Kv3.3 in the cerebellar dentate nucleus of glutamic acid decarboxylase 67-green fluorescent protein transgenic mice. Neuroscience. 2008;155:1059–69.

    Article  PubMed  CAS  Google Scholar 

  10. Hurlock EC, Bose M, Pierce G, Joho RH. Rescue of motor coordination by Purkinje cell-targeted restoration of Kv3.3 channels in Kcnc3-null mice requires Kcnc1. J Neurosci. 2009;29:15735–44.

    Article  PubMed  CAS  Google Scholar 

  11. Rudy B, Chow A, Lau D, Amarillo Y, Ozaita A, Saganich M, et al. Contributions of Kv3 channels to neuronal excitability. Ann NY Acad Sci. 1999;868:304–43.

    Article  PubMed  CAS  Google Scholar 

  12. Faber ESL, Sah Pankaj. Calcium-activated potassium channels: multiple contributions to neuronal function. Neuroscientist. 2003;9:181–94.

    Article  PubMed  CAS  Google Scholar 

  13. Pedroarena CM. Mechanisms supporting transfer of inhibitory signals into the spike output of spontaneously firing cerebellar nuclear neurons in vitro. Cerebellum. 2010;9:67–76.

    Article  PubMed  Google Scholar 

  14. Czubayko U, Sultan F, Thier P, Schwarz C. Two types of neurons in the rat cerebellar nuclei as distinguished by membrane potentials and intracellular fillings. J Neurophysiol. 2001;85:2017–29.

    PubMed  CAS  Google Scholar 

  15. Molineux ML, McRory JE, McKay BE, Hamid J, Mehaffey WH, Rehak R, et al. Specific T-type calcium channel isoforms are associated with distinct burst phenotypes in deep cerebellar nuclear neurons. Proc Natl Acad Sci USA. 2006;103:5555–60.

    Article  PubMed  CAS  Google Scholar 

  16. Uusisaari M, Obata K, Knopfel T. Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol. 2007;97:901–11.

    Article  PubMed  CAS  Google Scholar 

  17. Uusisaari M, Knopfel T. GlyT2+ neurons in the lateral cerebellar nucleus. Cerebellum. 2010;9:42–55.

    Article  PubMed  Google Scholar 

  18. Uusisaari M., Knopfel T. Functional classification of neurons in the mouse lateral cerebellar nuclei. Cerebellum. 2010. doi:10.1007/s12311-010-0240-3

  19. Galvez A, Gimenez-Gallego G, Reuben JP, Roy-Contancin L, Feigenbaum P, Kaczorowski GJ, et al. Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus. J Biol Chem. 1990;265:11083–90.

    PubMed  CAS  Google Scholar 

  20. Meera P, Wallner M, Toro L. A neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca2+–activated K+ channel resistant to charybdotoxin and iberiotoxin. Proc Natl Acad Sci USA. 2000;97:5562–7.

    Article  PubMed  CAS  Google Scholar 

  21. Knaus HG, McManus OB, Lee SH, Schmalhofer WA, Garcia-Calvo M, Helms LM, et al. Tremorgenic indole alkaloids potently inhibit smooth muscle high-conductance calcium-activated potassium channels. Biochemistry. 1994;33:5819–28.

    Article  PubMed  CAS  Google Scholar 

  22. Hu H, Shao LR, Chavoshy S, Gu N, Trieb M, Behrens R, et al. Presynaptic Ca2+–activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J Neurosci. 2001;21:9585–97.

    PubMed  CAS  Google Scholar 

  23. Raman IM, Gustafson AE, Padgett D. Ionic currents and spontaneous firing in neurons isolated from the cerebellar nuclei. J Neurosci. 2000;20:9004–16.

    PubMed  CAS  Google Scholar 

  24. Coetzee WA, Amarillo Y, Chiu J, Chow A, Lau D, McCormack T, et al. Molecular diversity of K+ channels. Ann NY Acad Sci. 1999;868:233–85.

    Article  PubMed  CAS  Google Scholar 

  25. Faber ESL, Sah Pankaj. Physiological role of calcium-activated potassium currents in the rat lateral amygdala. J Neurosci. 2002;22:1618–28.

    PubMed  CAS  Google Scholar 

  26. Chen X, Kovalchuk Y, Adelsberger H, Henning HA, Sausbier M, Wietzorrek G, et al. Disruption of the olivo-cerebellar circuit by Purkinje neuron-specific ablation of BK channels. Proc Natl Acad Sci. 2010;107:12323–8.

    Article  PubMed  CAS  Google Scholar 

  27. Cheron G, Sausbier M, Sausbier U, Neuhuber W, Ruth P, Dan B, et al. BK channels control cerebellar Purkinje and Golgi cell rhythmicity in vivo. PLoS ONE. 2009;4:e7991.

    Article  PubMed  Google Scholar 

  28. Imlach WL, Finch SC, Dunlop J, Meredith AL, Aldrich RW, Dalziel JE. The molecular mechanism of “ryegrass staggers”, a neurological disorder of K+ channels. J Pharmacol Exp Ther. 2008;327:657–64.

    Article  PubMed  CAS  Google Scholar 

  29. Adams PR, Constanti A, Brown DA, Clark RB. Intracellular Ca2+ activates a fast voltage sensitive K+ current in vertebrate sympathetic neurones. Nature. 1982;296:746–9.

    Article  PubMed  CAS  Google Scholar 

  30. Storm JF. Action potential repolarization and a fast afterhyperpolarization in rat hippocampal pyramidal cells. J Physiol. 1987;385:733–59.

    PubMed  CAS  Google Scholar 

  31. Lancaster B, Nicoll RA. Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones. J Physiol. 1987;389:187–203.

    PubMed  CAS  Google Scholar 

  32. Schwindt PC, Spain WJ, Crill WE. Calcium-dependent potassium currents in neurons from cat sensorimotor cortex. J Neurophysiol. 1992;67:216–26.

    PubMed  CAS  Google Scholar 

  33. Vergara C, Latorre R, Marrion NV, Adelman JP. Calcium-activated potassium channels. Curr Opin Neurobiol. 1998;8:321–9.

    Article  PubMed  CAS  Google Scholar 

  34. Gittis AH, Moghadam SH, du Lac S. Mechanisms of sustained high firing rates in two classes of vestibular nucleus neurons: differential contributions of resurgent Na, Kv3, and BK currents. J Neurophysiol. 2010;104:1625–34.

    Article  PubMed  CAS  Google Scholar 

  35. Alvina K, Khodakhah K. Selective regulation of spontaneous activity of neurons of the deep cerebellar nuclei by N-type calcium channels in juvenile rats. J Physiol. 2008;586:2523–38.

    Article  PubMed  CAS  Google Scholar 

  36. Brenner R, Jegla TJ, Wickenden A, Liu Y, Aldrich RW. Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J Biol Chem. 2000;275:6453–61.

    Article  PubMed  CAS  Google Scholar 

  37. Thurm H, Fakler B, Oliver D. Ca2+–independent activation of BKCa channels at negative potentials in mammalian inner hair cells. J Physiol. 2005;569:137–51.

    Article  PubMed  CAS  Google Scholar 

  38. Yan J, Aldrich RW. LRRC26 auxiliary protein allows BK channel activation at resting voltage without calcium. Nature. 2010;466:513–6.

    Article  PubMed  CAS  Google Scholar 

  39. Aksenov D, Serdyukova N, Irwin K, Bracha V. GABA neurotransmission in the cerebellar interposed nuclei: involvement in classically conditioned eyeblinks and neuronal activity. J Neurophysiol. 2004;91:719–27.

    Article  PubMed  CAS  Google Scholar 

  40. Haines D, Manto MU, Glickstein M. Clinical symptoms of cerebellar disease and their interpretation. Cerebellum. 2007;6:141–56.

    Article  Google Scholar 

  41. Matthews EA, Weible AP, Shah S, Disterhoft JF. The BK-mediated fAHP is modulated by learning a hippocampus-dependent task. Proc Natl Acad Sci USA. 2008;105:15154–9.

    Article  PubMed  CAS  Google Scholar 

  42. Martina M, Schultz JH, Ehmke H, Monyer H, Jonas P. Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. J Neurosci. 1998;18:8111–25.

    PubMed  CAS  Google Scholar 

  43. Erisir A, Lau D, Rudy B, Leonard CS. Function of specific K+ channels in sustained high-frequency firing of fast-spiking neocortical interneurons. J Neurophysiol. 1999;82:2476–89.

    PubMed  CAS  Google Scholar 

  44. Macica CM, von Hehn CAA, Wang LY, Ho CS, Yokoyama S, Joho RH, et al. Modulation of the Kv3.1b potassium channel isoform adjusts the fidelity of the firing pattern of auditory neurons. J Neurosci. 2003;23:1133–41.

    PubMed  CAS  Google Scholar 

  45. Lien CC, Jonas P. Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. J Neurosci. 2003;23:2058–68.

    PubMed  CAS  Google Scholar 

  46. Gu N, Vervaeke K, Storm JF. BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells. J Physiol. 2007;580:859–82.

    Article  PubMed  CAS  Google Scholar 

  47. Carter BC, Bean BP. Sodium entry during action potentials of mammalian neurons: incomplete inactivation and reduced metabolic efficiency in fast-spiking neurons. Neuron. 2009;64:898–909.

    Article  PubMed  CAS  Google Scholar 

  48. Song P, Yang Y, Barnes-Davies M, Bhattacharjee A, Hamann M, Forsythe ID, et al. Acoustic environment determines phosphorylation state of the Kv3.1 potassium channel in auditory neurons. Nat Neurosci. 2005;8:1335–42.

    Article  PubMed  CAS  Google Scholar 

  49. Alvina K, Khodakhah K. The therapeutic mode of action of 4-aminopyridine in cerebellar ataxia. J Neurosci. 2010;30:7258–68.

    Article  PubMed  CAS  Google Scholar 

  50. Waters MF, Minassian NA, Stevanin G, Figueroa KP, Bannister JPA, Nolte D, et al. Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes. Nat Genet. 2006;38:447–51.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I want to specially thank Matthias Sausbier and Peter Ruth for a committed earlier collaboration to this project, which unfortunately led to inconclusive results due to technical problems inherent to the mouse model. Reports on this earlier collaboration have been presented in abstract form (Soc for neurosciences, 2005, 2007). I am grateful to Ute Grosshennig and Ursula Pascht for technical assistance, and for useful comments and suggestions of anonymous reviewers and the editors of this issue. Finally I want to thank Cornelius Schwarz for his comments on this manuscript.

Conflict of Interests

There is no conflict of interests related to the present study to be disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine M. Pedroarena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedroarena, C.M. BK and Kv3.1 Potassium Channels Control Different Aspects of Deep Cerebellar Nuclear Neurons Action Potentials and Spiking Activity. Cerebellum 10, 647–658 (2011). https://doi.org/10.1007/s12311-011-0279-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-011-0279-9

Keywords

Navigation