Skip to main content
Log in

Increase in alpha-linolenic acid content by simultaneous expression of fatty acid metabolism genes in Sesame (Sesamum indicum L.)

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Sesame is considered one of India’s important sources of edible oil and an excellent dietary source for its nutritional and medicinal value. Sesame DGAT1 and PDAT1 genes were co-expressed with omega 3 FAD genes. Systemic isolation of sesame DGAT1, PDAT1, ER type FAD3, and chloroplast type FAD7/8 genes were performed. Their sequence was analyzed for genomic organization, amino acid characterization, organ specificity, and phylogenetic relationships. The insilico analysis revealed the unique features of DGAT1, PDAT1, and FAD3 gene sequences, whereas FAD7 and FAD8 sequences had the same protein characters and were grouped in phylogeny analysis, only variation was found in their mRNA UTR regions. Functional expression of sesame TAG synthesis genes and omega-3 FAD genes was studied in yeast mutant H1246 deficient for TAG synthesis. Functional analyses in yeast with the presence of ALA confirmed the identity of sesame FAD3, FAD7 and FAD8 genes. Recombinant expression of pESC + DGAT1 + FAD3 vector in yeast mutant resulted in lipid accumulation with 10% higher ALA content. Thus this gene combination can be co-expressed in sesame and other plant systems to increase the lipid accumulation with high omega-3 fatty acid (ALA) content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andreu V, Lagunas B, Collados R, Picorel R, Alfonso M (2010) The GmFAD7 gene family from soybean: identification of novel genes and tissue-specific conformations of the FAD7 enzyme involved in desaturase activity. J Exp Bot 61(12):3371–3384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anilakumar KR, Pal A, Khanum F, Bawa AS (2010) Nutritional, medicinal and industrial uses of sesame (Sesamum indicum L.) seeds-an overview. Agricultures Conspectus Scientificus 75(4):159–168

    Google Scholar 

  • Bhunia RK, Chakraborty A, Kaur R, Gayatri T, Bhattacharyya J, Basu A, Maiti MK, Sen SK (2014) Seed-specific increased expression of 2S albumin promoter of sesame qualifies it as a useful genetic tool for fatty acid metabolic engineering and related transgenic intervention in sesame and other oil seed crops. Plant Mol Biol 86(4–5):351–365

    Article  CAS  PubMed  Google Scholar 

  • Bhunia RK, Kaur R, Maiti MK (2015) Metabolic engineering of fatty acid biosynthetic pathway in sesame (Sesamum indicum L.): assembling tools to develop nutritionally desirable sesame seed oil. Phytochem Rev 15(5):799–811

    Article  Google Scholar 

  • Bhunia RK, Chakraborty A, Kaur R et al (2016) Enhancement of α-linolenic acid content in transgenic tobacco seeds by targeting a plastidial ω-3 fatty acid desaturase (fad7) gene of Sesamum indicum to ER. Plant Cell Reports 35:213–226

    Article  CAS  PubMed  Google Scholar 

  • Browse J, IMcCourt P, Somerville C (1986) A mutant of Arabidopsis deficient in C18:3 and C16:3 leaf lipids. Plant Physiol 81(13):859–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cagliari A, Margis R, Dos Santos Maraschin F, Turchetto-Zolet AC, Loss G, MargisPinheiro M (2011) Biosynthesis of Triacylglycerols (TAGs) in plants and algae. Int J Plant Biology 2(1):e10

    Article  Google Scholar 

  • Cao H, Shockey JM, Klasson KT, Chapital DC, Mason CB (2013) Developmental Regulation of Diacylglycerol Acyltransferase Family Gene Expression in Tung Tree Tissues. PLoS ONE 8(10):e76946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chellamuthu M, Kumaresan K, Subramanian S, Muthumanickam H (2019) Functional analysis of sesame diacylglycerol acyltransferase and phospholipid: diacylglycerol acyltransferase genes using in silico and in vitro approaches. Plant Mol Biology Report 37(3):146–156

    Article  CAS  Google Scholar 

  • Chi X, Hu R, Zhang X, Chen M, Chen N, Pan L et al (2014) Cloning and Functional Analysis of Three Diacylglycerol Acyltransferase Genes from Peanut (Arachis hypogaea L.).PLoS ONE. 9(9), e105834

  • Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne H (2000) Phospholipid: diacylglycerol acyltransferase: An enzyme that catalyzes the acyl CoA-independent formation of triacylglycerol in yeast and plants. Proceedings of the National Academy of Science of the United States of America. 97(12), 6487–6492

  • Dar AA, Kancharla PK, Chandra K, Sodhi YS, Arumugam N (2019) Assessment of variability in lignan and fatty acid content in the germplasm of Sesamum indicum L. J Food Sci Technol 56(2):976–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du ZY, Benning C (2016) Triacylglycerol accumulation in photosynthetic cells in plants and algae. In: Nakamura Y, Li-Beisson Y (eds) Lipid in plant and algae development. Subcellular Biochemistry. Springer International Publishing, p 86

  • Grosely R, Kopanic JL, Nabors S, Kieken F, Spagnol G, Al-Mugotir M, Zach S, Sorgen PL (2013) Effects of phosphorylation on the structure and backbone dynamics of the intrinsically disordered connexin43 C-terminal domain. J Biol Chem 288(34):24857–24870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan LL, Wu W, Hu B, Li D, Chen JW, Hou K, Wang L (2014) Developmental and growth temperature regulation of omega-3 fatty acid desaturase genes in safflower (Carthamus tinctorius L.). Genet Mol Res 3(3):6623–6637

    Article  Google Scholar 

  • Guo HH, Li QQ, Wang TT, Hu Q, Deng WH, Xia XL et al (2014) XsFAD2 gene encodes the enzyme responsible for the high linoleic acid content in oil accumulated in Xanthoceras sorbifolia seeds. J Sci Food Agric 94(3):482–488

    Article  CAS  PubMed  Google Scholar 

  • Jilian F, Yan C, Shanklin J, Xu C (2013) Phospholipid: diacylglycerol acyltransferase -mediated triacylglycerol biosynthesis is crucial for protection against fatty acid-induced cell death in growing tissues of Arabidopsis. Plant J 76(6):930–942

    Article  Google Scholar 

  • Kalscheuer R, Steinbuchel A (2003) A novel bifunctional wax ester synthase/ acyl-CoA: diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem 278(10):8075–8082

    Article  CAS  PubMed  Google Scholar 

  • Kelly AA, van Erp H, Quettier AL, Shaw E, Menard G, Kurup S, Eastmond PJ (2013) The sugar-dependent1 lipase limits triacylglycerol accumulation in vegetative tissues of Arabidopsis. Plant Physiol 162(3):1282–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HU, Lee KR, Go YS, Jung JH, Suh MC, Kim JB (2011) Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants. Plant Cell Physiology 52(6):983–993

    Article  CAS  PubMed  Google Scholar 

  • Knittelfelder OL, Kohlwein SD (2017) Lipid Extraction from Yeast Cells. Cold Spring Harbor Protocols:085449

  • Leber R, Zinser E, Zellnig G, Paltauf F, Daum G (1994) Characterization of lipid particles of the yeast, Saccharomyces cerevisiae. Yeast 10(11):1421–1428

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:257–260

    Article  Google Scholar 

  • Li F, Wu X, Lam P, Bird D, Zheng H et al (2008) Identification of the wax ester synthase/acyl-coenzyme A: Diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiol 148(1):97–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li RZ, Yu KS, Hildebrand DF (2010) DGAT1, DGAT2 and PDAT expression in seed and other tissues of epoxy and hydroxyl fatty acid accumulating plants. Lipids 45(2):145–157

    Article  PubMed  Google Scholar 

  • Lim JM, Vikramathithan J, Hwangbo K, Ahn JW, Park YI, Choi DW, Jeong WJ (2015) Threonine 286 of fatty acid desaturase 7 is essential for ω-3 fatty acid desaturation in the green microalga Chlamydomonas reinhardtii. Front Microbiol 6:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu HL, Yin ZJ, Xiao L, Xu YN, Qu LQ (2012) Identification and evaluation of ω-3 fatty acid desaturase genes for hyperfortifying α-linolenic acid in transgenic rice seed. J Exp Bot 63(8):3279–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lock YY, Snyder CL, Zhu W, Siloto RM, Weselake RJ, Shah S (2009) Antisense suppression of type 1 diacylglycerol acyltransferase adversely affects plant development in Brassica napus. Plant Physiol 137(1):61–71

    Article  CAS  Google Scholar 

  • Lu Y (2011) Making yeast competent cells and yeast cell transformation.Bio-Protocol 101:e96. https://doi.org/10.21769/BioProtoc.96

  • Murphy DJ (2005) Plant lipids: biology, utilization and manipulation. Blackwell Publishing, Oxford, UK

    Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oelkers PD, Cromley M, Padamsee J, Billheimer T, Sturley SL (2002) The DGA1 gene determines a second triglyceride synthetic pathway in yeast. J Biol Chem 277(11):8877–8881

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Peng FY, Weselake RJ (2015) Genome-wide analysis of phospholipid: diacylglycerol acyltransferase (PDAT) genes in plants reveal the eudicot-wide PDAT gene expansion and altered selective pressures acting on the core eudicot PDAT paralogs. Plant Physiol 167(3):887–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan X, Siloto RMP, Wickramarathna AD, Mietkiewska E, Weselake RJ (2013) Identification of a Pair of Phospholipid: Diacylglycerol Acyltransferases from Developing Flax (Linum usitatissimum L.) seed catalyzing the Selective Production of Trilinolenin. J Biol Chem 288(33):24173–24188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng D, Zhang L, Tan X, Yuan D, Liu X, Zhou B (2016) Increasing seed oil content and altering oil quality of Brassica napus L. by over-expression of diacylglycerol acyltransferase 1 (SsDGAT1) from Sapium sebiferum (L.) Roxb. Molecular Breeding.36 (10).1–14

  • Roman A, Andreu V, Hernandez ML, Lagunas B, Picorel R, Martinez-Rivas JM et al (2012) Contribution of the different omega-3 fatty acid desaturase genes to the cold response in soybean. J Exp Bot 63(13):4973–4982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shockey JM, Dhanoa PK, Dupuy T, Chapitala DC, Mullen RT (2005) Cloning, functional analysis, and subcellular localization of two isoforms of NADH: cytochrome b5 reductase from developing seeds of tung (Vernicia fordii). Plant Sci 169(2):375–385

    Article  CAS  Google Scholar 

  • Simopoulos AP (2016) An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 8(3):128

    Article  PubMed  PubMed Central  Google Scholar 

  • Stahl U, Carlsson AS, Lenman M, Dahlqvist A, Huang B, Banas W, Banas A, Stymne S (2004) Cloning and functional characterization of a phospholipid: diacylglycerol acyltransferase from Arabidopsis. Plant Physiol 135(3):1324–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomiyama T, Kurihara K, Ogawa T, Maruta T, Ogawa T, Ohta D, Sawa Y, Ishikawa T (2017) Wax ester synthase/diacylglycerol acyltransferase isoenzymes play a pivotal role in wax ester biosynthesis in Euglena gracilis. Sci Rep 7(1):1–13

    Article  CAS  Google Scholar 

  • Troncoso-Ponce MA, Kilaru A, Cao X, Durrett TP, Fan J, Jensen JK, Thrower NA, Pauly M, Wilkerson C, Ohlrogge JB (2011) Comparative deep transcriptional profiling of four developing oilseeds. Plant J 68(6):1014–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turchetto-Zolet AC, Maraschin FS, de Morais GL, Cagliari A, Andrade CM et al (2011) Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme in neutral lipid biosynthesis. BMC Evol Biol 11(1):1–14

    Article  Google Scholar 

  • Van EH, Bates PD, Burgal J, Shockey J, Browse J (2011) Castor phospholipid: diacylglycerol acyltransferase facilitates efficient metabolism of hydroxyl fatty acids in transgenic Arabidopsis. Plant Physiol 155(2):683–693

    Article  Google Scholar 

  • Vrinten P, Hu ZY, Munchinsky MA, Rowland G, Qiu X (2005) Two FAD3 desaturase genes control the level of linolenic acid in flax seed. Plant Physiol 139(1):79–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner M, Hoppe K, Czabany T, Heilmann M, Daum G, Feussner I, Fulda M (2010) Identification and characterization of an acyl-CoA: diacylglycerol acyltransferase 2 (DGAT2) gene from the microalga O. tauri. Plant Physiol Biochem 48(6):407–416

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Liu K, Zhang Y et al (2015) Genetic discovery for oil production and quality in sesame. Nat Commun 6:8609

    Article  CAS  Google Scholar 

  • Xue Y, Chen B, Win AN, Fu C, Lian J, Liu X et al (2018) Omega-3 fatty acid desaturase gene family from two ω-3 sources, Salvia hispanica and Perilla frutescens: Cloning, characterization and expression. PLoS ONE 13(1):e0191432

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue Y, Yin N, Chen B, Liao F, Win AN, Jiang J et al (2017) Molecular cloning and expression analysis of two FAD2 genes from chia (Salvia hispanica). Acta Physiol Plant 39(4):95

    Article  Google Scholar 

  • Yang Q, Fan C, Guo Z, Qin J, Wu J, Li Q et al (2012) Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theor Appl Genet 125(4):715–729

    Article  CAS  PubMed  Google Scholar 

  • Yoon K, Han D, Li Y, Sommerfeld M, Hu Q (2012) Phospholipid: diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii. Plant Cell 24(9):3708–3724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan L, Mao X, Zhao K, Ji X, Ji C, Xue J, Li R (2017) Characterisation of phospholipid: diacylglycerol acyltransferases (PDATs) from Camelina sativa and their roles in stress responses. Biology open 6(7):1024–1034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Wei Y, Jako C, Kumar A, Selvaraj G et al (1999) The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J 19(6):645–653

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the Department of Biotechnology, PSG College of Technology, and the Department of Science and Technology, Government of India for providing funding and infrastructure. We thank Dr.Sten Stymne and Dr.Jenny Lindberg Yilmaz for providing the Yeast H1246 mutant strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selvi Subramanian.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest.

Consent for publication

All authors approved the manuscript for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chellamuthu, M., Kumaresan, K. & Subramanian, S. Increase in alpha-linolenic acid content by simultaneous expression of fatty acid metabolism genes in Sesame (Sesamum indicum L.). Physiol Mol Biol Plants 28, 559–572 (2022). https://doi.org/10.1007/s12298-022-01152-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-022-01152-0

Keywords

Navigation