Skip to main content

Advertisement

Log in

Seed osmopriming with Ca2+ and K+ improves salt tolerance in quinoa seeds and seedlings by amplifying antioxidant defense and ameliorating the osmotic adjustment process

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Salinity restricts seed germination and seedling growth through induction of osmotic and oxidative stresses. Therefore, this study aimed to enhance salinity tolerance in quinoa seed by pre-optimized osmo-priming treatments of CaCl2 (10 mM, 10 °C, 10 h) and KNO3 (150 mM, 5 °C, 24 h). The results showed that these treatments developed the cellular defense mechanisms in seeds as ‘priming memory’ that could improve the physiological and biochemical responses to salinity in post-priming stages. The germination capacity and seedling growth decreased with increasing salinity that was accompanied with a higher content of MDA and H2O2. However, the improvement of primed seed vigor against high salinity was explained by increasing the biological defense mechanisms including antioxidant enzymes (CAT, APX, SOD, GPX and PPO) and antioxidant metabolites (DPPH antioxidant activity, phenolics, flavonoids, ascorbic acid), particularly in presence of salt stress. In addition, Ca2+ and K+ priming acquired salinity tolerance in post-priming stages through a significant increase in the accumulation of proline, glycine-betaine, soluble carbohydrate. Improvement in homeostasis of K+/Na+ ratio by promoting K+ maintenance and Na+ exclusion was also found in post-priming stages. These observations may be utilized as effective methods in improving salinity tolerance of quinoa seed germination in saline agriculture by improving the antioxidant system, osmolyte accumulation and mineral nutrient homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abid M, Hakeem A, Shao Y, Liu Y, Zahoor R, Fan Y, Snider JL (2018) Seed osmopriming invokes stress memory against post-germinative drought stress in wheat (Triticum aestivum L.). Environ Exp Bot 145:12–20

    Article  CAS  Google Scholar 

  • Adolf VI, Jacobsen SE, Shabala S (2013) Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environ Exp Bot 92:43–54

    Article  CAS  Google Scholar 

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    Article  CAS  PubMed  Google Scholar 

  • Alam A, Ullah H, Cha-um S, Tisarum R, Datta A (2021) Effect of seed priming with potassium nitrate on growth, fruit yield, quality and water productivity of cantaloupe under water-deficit stress. Sci Hortic 288:110354

    Article  CAS  Google Scholar 

  • Amor NB, Megdiche W, Jiménez A, Sevilla F, Abdelly C (2010) The effect of calcium on the antioxidant systems in the halophyte Cakile maritima under salt stress. Acta Physiol Plant 32(3):453–461

    Article  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Harris P (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166(1):3–16

    Article  CAS  Google Scholar 

  • Ashraf M, Rauf H (2001) Inducing salt tolerance in maize (Zea mays L.) through seed priming with chloride salts: Growth and ion transport at early growth stages. Acta Physiol Plant 23(4):407–414

    Article  CAS  Google Scholar 

  • Bahcesular B, Yildirim ED, Karaçocuk M, Kulak M, Karaman S (2020) Seed priming with melatonin effects on growth, essential oil compounds and antioxidant activity of basil (Ocimum basilicum L.) under salinity stress. Ind Crop Prod 146:112165

    Article  CAS  Google Scholar 

  • Bajwa AA, Farooq M, Nawaz A (2018) Seed priming with sorghum extracts and benzyl aminopurine improves the tolerance against salt stress in wheat (Triticum aestivum L.). Physiol Mol Biol Plants 24(2):239–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Bruce TJ, Matthes MC, Napier JA, Pickett JA (2007) Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci 173(6):603–608

    Article  CAS  Google Scholar 

  • Burguieres E, McCue P, Kwon YI, Shetty K (2007) Effect of vitamin C and folic acid on seed vigour response and phenolic-linked antioxidant activity. Bioresour Technol 98(7):1393–1404

    Article  CAS  PubMed  Google Scholar 

  • Causin HF, Bordón DA, Burrieza H (2020) Salinity tolerance mechanisms during germination and early seedling growth in Chenopodium quinoa Wild. genotypes with different sensitivity to saline stress. Environ Exp Bot 172:103–995

    Article  Google Scholar 

  • Chen K, Arora R (2011) Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in Spinach (Spinacia oleracea). Plant Sci 180(2):212–220

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Arora R (2013) Priming memory invokes seed stress-tolerance. Environ Exp Bot 94:33–45

    Article  CAS  Google Scholar 

  • Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP, Shabala S (2007) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58:4245–4255

    Article  CAS  PubMed  Google Scholar 

  • Debez A, Hamed KB, Grignon C, Abdelly C (2004) Salinity effects on germination, growth, and seed production of the halophyte Cakile maritima. Plant Soil 262(1–2):179–189

    Article  CAS  Google Scholar 

  • Ellouzi H, Sghayar S, Abdelly C (2017) H2O2 seed priming improves tolerance to salinity; drought and their combined effect more than mannitol in Cakile maritima when compared to Eutrema salsugineum. J Plant Physiol 210:38–50

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Romdhane L, Rehman A, Al-Alawi AK, Al-Busaidi WM, Asad SA, Lee DJ (2020) Integration of seed priming and biochar application improves drought tolerance in cowpea. J Plant Growth Regul 40(5):1972–1980

    Article  Google Scholar 

  • Farooq M, Almamari S, Rehman A, Al-Busaidi WM, Wahid A, Al-Ghamdi SS (2021) Morphological, physiological and biochemical aspects of zinc seed priming-induced drought tolerance in faba bean. Sci Hortic 281:109–894

    Article  Google Scholar 

  • Finch-Savage WE, Bassel GW (2016) Seed vigour and crop establishment: extending performance beyond adaptation. J Exp Bot 67(3):567–591

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179(4):945–963

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Zhang Z, Liu J, Chen M, Pan R, Hu W, Hu J (2020) Seed priming with spermidine and trehalose enhances chilling tolerance of rice via different mechanisms. J Plant Growth Regul 39(2):669–679

    Article  CAS  Google Scholar 

  • Ghasemi N, Omidi H, Bostani A (2021) Morphological properties of Catharanthus roseus L. seedlings affected by priming techniques under natural salinity stress. J Plant Growth Regul 40(2):550–557

    Article  CAS  Google Scholar 

  • Ghiyasi M, Moghaddam SS, Amirnia R, Damalas CA (2019) Chemical priming with salt and urea improves germination and seedling growth of black cumin (Nigella sativa L under osmotic stress. J Plant Growth Regul 38(3):1170–1178

    Article  CAS  Google Scholar 

  • Habib N, Ali Q, Ali S, Haider MZ, Javed MT, Khalid M, Alyemeni MN (2021) seed priming with sodium nitroprusside and H2O2 confers better yield in wheat under salinity: water relations, antioxidative defense mechanism and ion homeostasis. J Plant Growth Regul 40:2433–2453

    Article  CAS  Google Scholar 

  • Hariadi Y, Marandon K, Tian Y, Jacobsen SE, Shabala S (2011) Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J Exp Bot 62(1):185–193

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Rahman A, Inafuku M, Oku H, Fujita M (2018) Exogenous nitric oxide donor and arginine provide protection against short-term drought stress in wheat seedlings. Physiol Mol Biol Plants 24(6):993–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hichem H, Mounir D (2009) Differential responses of two maize (Zea mays L.) varieties to salt stress: changes on polyphenols composition of foliage and oxidative damages. Ind Crop Prod 30(1):144–151

    Article  CAS  Google Scholar 

  • Hongna C, Leyuan T, Junmei S, Xiaori H, Xianguo C (2021) Exogenous salicylic acid signal reveals an osmotic regulatory role in priming the seed germination of Leymus chinensis under salt-alkali stress. Environ Exp Bot 188:104–498

    Article  Google Scholar 

  • Hussain M, Farooq M, Lee DJ (2017) Evaluating the role of seed priming in improving drought tolerance of pigmented and non-pigmented rice. J Agron Crop Sci 203(4):269–276

    Article  CAS  Google Scholar 

  • Hussain S, Zhu C, Huang J, Huang J, Zhu L, Cao X, Zhang J (2020) Ethylene response of salt stressed rice seedlings following Ethephon and 1-methylcyclopropene seed priming. Plant Growth Regul 92:219–231

    Article  CAS  Google Scholar 

  • Ibrahim EA (2016) Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol 192:38–46

    Article  CAS  PubMed  Google Scholar 

  • Irigoyen JJ, Einerich DW, Sánchez-Díaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants. Physiol Plant 84(1):55–60

    Article  CAS  Google Scholar 

  • Jacobsen SE (2011) The situation for quinoa and its production in southern Bolivia: from economic success to environmental disaster. J Agron Crop Sci 197(5):390–399

    Article  Google Scholar 

  • Jacobsen SE, Jørgensen I, Stølen O (1994) Cultivation of quinoa (Chenopodium quinoa) under temperate climatic conditions in Denmark. J Agric Sci 122(1):47–52

    Article  Google Scholar 

  • Jafar MZ, Farooq M, Cheema MA, Afzal I, Basra S, Wahid MA, Shahid M (2012) Improving the performance of wheat by seed priming under saline conditions. J Agron Crop Sci 198(1):38–45

    Article  Google Scholar 

  • Jisha KC, Vijayakumari K, Puthur JT (2013) Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant 35(5):1381–1396

    Article  Google Scholar 

  • Kamiab F, Talaie A, Khezri M, Javanshah A (2014) Exogenous application of free polyamines enhance salt tolerance of pistachio (Pistacia vera L.) seedlings. Plant Growth Regul 72(3):257–268

    Article  CAS  Google Scholar 

  • Khalaki MA, Moameri M, Lajayer BA, Astatkie T (2020) Influence of nano-priming on seed germination and plant growth of forage and medicinal plants. Plant Growth Regul 93(1):13–28

    Article  Google Scholar 

  • Loutfy N, Sakuma Y, Gupta DK, Inouhe M (2020) Modifications of water status, growth rate and antioxidant system in two wheat cultivars as affected by salinity stress and salicylic acid. J Plant Res 133(4):549–570

    Article  CAS  PubMed  Google Scholar 

  • Malcolm CV, Lindley VA, O’leary JW, Runciman HV, Barrett-Lennard EG (2003) Halophyte and glycophyte salt tolerance at germination and the establishment of halophyte shrubs in saline environments. Plant Soil 253(1):171–185

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Michael AJ (2014) Enhancement of oxidative and drought tolerance in Arabidopsis by over accumulation of antioxidant flavonoids. Plant J 77(3):367–379

    Article  CAS  PubMed  Google Scholar 

  • Nawaz F, Naeem M, Akram A, Ashraf MY, Ahmad KS, Zulfiqar B, Anwar I (2017) Seed priming with KNO3 mediates biochemical processes to inhibit lead toxicity in maize (Zea mays L.). J Sci Food and Agric 97(14):4780–4789

    Article  CAS  Google Scholar 

  • Nouman W, Basra SM, Yasmeen A, Gull T, Hussain SB, Zubair M, Gul R (2014) Seed priming improves the emergence potential, growth and antioxidant system of Moringa oleifera under saline conditions. Plant Growth Regul 73(3):267–278

    Article  CAS  Google Scholar 

  • Panta S, Flowers T, Lane P, Doyle R, Haros G, Shabala S (2014) Halophyte agriculture: success stories. Environ Exp Bot 107:71–83

    Article  Google Scholar 

  • Paparella S, Araújo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34(8):1281–1293

    Article  CAS  PubMed  Google Scholar 

  • Randhir R, Shetty K (2005) Developmental stimulation of total phenolics and related antioxidant activity in light-and dark-germinated corn by natural elicitors. Process Biochem 40(5):1721–1732

    Article  CAS  Google Scholar 

  • Ruffino AMC, Rosa M, Hilal M, González JA, Prado FE (2010) The role of cotyledon metabolism in the establishment of quinoa (Chenopodium quinoa) seedlings growing under salinity. Plant Soil 326(1):213–224

    Article  CAS  Google Scholar 

  • Ruiz-Carrasco K, Antognoni F, Coulibaly AK, Lizardi S, Covarrubias A, Martínez EA, Zurita-Silva A (2011) Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiol Biochem 49(11):1333–1341

    Article  CAS  PubMed  Google Scholar 

  • Saad-Allah KM, Ragab GA (2020) Sulfur nanoparticles mediated improvement of salt tolerance in wheat relates to decreasing oxidative stress and regulating metabolic activity. Physiol Mol Biol Plants 26(11):2209–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekmen AH, Turkan I, Tanyolac ZO, Ozfidan C, Dinc A (2012) Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata Bark. Enviro Exp Bot 77:3–76

    Article  Google Scholar 

  • Sen A, Puthur JT (2020) Influence of different seed priming techniques on oxidative and antioxidative responses during the germination of Oryza sativa varieties. Physiol Mol Biol Plants 26(3):551–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahba MA, Qian YL, Lair KD (2008) Improving seed germination of salt grass under saline conditions. Crop Sci 48(2):756–762

    Article  CAS  Google Scholar 

  • Sheteiwy M, Shen H, Xu J, Guan Y, Song W, Hu J (2017) Seed polyamines metabolism induced by seed priming with spermidine and 5-aminolevulinic acid for chilling tolerance improvement in rice (Oryza sativa L.) seedlings. Environ Exp Bot 137:58–72

    Article  CAS  Google Scholar 

  • Sheteiwy MS, Gong D, Gao Y, Pan R, Hu J, Guan Y (2018) Priming with methyl jasmonate alleviates polyethylene glycol-induced osmotic stress in rice seeds by regulating the seed metabolic profile. Environ Exp Bot 153:236–248

    Article  CAS  Google Scholar 

  • Singh A, Banerjee A, Roychoudhury A (2020) Seed priming with calcium compounds abrogate fluoride-induced oxidative stress by upregulating defense pathways in an indica rice variety. Protoplasma 257(3):767–782

    Article  CAS  PubMed  Google Scholar 

  • Sliwinska E, Jing HC, Job C, Job D, Bergervoet JH, Bino RJ, Groot SP (1999) Effect of harvest time and soaking treatment on cell cycle activity in sugar beet seeds. Seed Sci Res 9:91–100

    Article  Google Scholar 

  • Srivastava AK, Lokhande VH, Patade VY, Suprasanna P, Sjahril R, D’Souza SF (2010) Comparative evaluation of hydro-, chemo-, and hormonal-priming methods for imparting salt and PEG stress tolerance in Indian mustard (Brassica juncea L.). Acta Physiol Plant 32(6):1135–1144

    Article  Google Scholar 

  • Stikic R, Glamoclija D, Demin M, Vucelic-Radovic B, Jovanovic Z, Milojkovic-Opsenica D, Milovanovic M (2012) Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. J Cereal Sci 55(2):132–138

    Article  CAS  Google Scholar 

  • Tang X, Mu X, Shao H, Wang H, Brestic M (2015) Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Crit Rev Biotechnol 35(4):425–437

    Article  PubMed  Google Scholar 

  • Valadez-Bustos MG, Aguado-Santacruz GA, Tiessen-Favier A, Robledo-Paz A, Muñoz-Orozco A, Rascón-Cruz Q, Santacruz-Varela A (2016) A reliable method for spectrophotometric determination of glycine betaine in cell suspension and other systems. Anal Biochem 498:47–52

    Article  CAS  PubMed  Google Scholar 

  • Yagar H (2004) Some biochemical properties of polyphenol oxidase from celery. Prep Biochem Biotechnol 34(4):387–397

    Article  CAS  PubMed  Google Scholar 

  • Yeo A (1998) Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot 49(323):915–929

    CAS  Google Scholar 

  • Yusefi-Tanha E, Fallah S, Pessarakli M (2019) Effects of seed priming on growth and antioxidant components of hairy vetch (Vicia villosa) seedlings under chilling stress. J Plant Nutr 42(5):428–443

    Article  CAS  Google Scholar 

  • Zhang WF, Zhang F, Raziuddin R, Gong HJ, Yang ZM, Lu L, Zhou WJ (2008) Effects of 5-aminolevulinic acid on oilseed rape seedling growth under herbicide toxicity stress. J Plant Growth Regul 27(2):159–169

    Article  Google Scholar 

  • Zhang H, Zhang G, Lü X, Zhou D, Han X (2015) Salt tolerance during seed germination and early seedling stages of 12 halophytes. Plant Soil 388(1–2):229–241

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The contribution of each one of the 5 authors is as follows: AM: performed the experiments, contributed in the analysis and interpretation of data, statistical analysis and wrote the manuscript. FS: designed the experiments, the analysis and interpretation of data, statistical analysis and co-wrote the paper. RM: contributed in the physiological and biochemical study. FD: assisted with the experiments, data analysis and contributed in the physiological study. AR: provided the chemical materials and contributed in the biochemical study.

Corresponding author

Correspondence to Farzad Sharifzadeh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamedi, A., Sharifzadeh, F., Maali-Amiri, R. et al. Seed osmopriming with Ca2+ and K+ improves salt tolerance in quinoa seeds and seedlings by amplifying antioxidant defense and ameliorating the osmotic adjustment process. Physiol Mol Biol Plants 28, 251–274 (2022). https://doi.org/10.1007/s12298-022-01125-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-022-01125-3

Keywords

Navigation