Skip to main content
Log in

Nitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulation

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

This study was planned to evaluate the role of exogenous application of sodium nitroprusside (SNP), a NO donor, on the deleterious effect of salinity in Capsicum annum L. seedlings. Different NO doses (0, 50, 100 and 150 µM SNP) were foliarly applied to pepper seedlings grown under the non-saline and saline conditions (50, 100 and 150 mM of NaCl). The photosynthetic rate (Pn), stomatal conductance (gs), intercellular CO2 concentration (Ci), transpiration rate (Tr), mineral element (Zn, Fe, B, K, Ca and Mg) uptake, plant growth and leaf relative water content (LRWC) were decreased by NaCl treatment, but NO treatments generally improved the observed parameters. 150 mM NaCl treatment caused overaccumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA) by 87 and 100% respectively as compared to control. However, NO application (150 µM SNP) at 150 mM of NaCl significantly decreased H2O2 and MDA to 34 and 54%, respectively. The present study clarified that the exogenous NO treatment supported pepper seedlings against salinity stress by regulating the mineral nutrient uptake, antioxidant enzyme activity, osmolyte accumulation, and improving the LRWC and photosynthetic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal S, Sairam R, Srivastava G, Tyagi A, Meena R (2005) Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings. Plant Sci 169:559–570

    Article  CAS  Google Scholar 

  • Ahanger MA, Agarwal RM (2017) Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L.) as influenced by potassium supplementation. Plant Physiol Biochem 115:449–460

    Article  PubMed  CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of Enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    Article  PubMed  CAS  Google Scholar 

  • Ahmad P, Abdel Latef AA, Hashem A, Abd Allah EF, Gucel S, Tran L-SP (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347

    PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Ahanger MA, Alyemeni MN, Wijaya L, Alam P (2018a) Exogenous application of nitric oxide modulates osmolyte metabolism, antioxidants, enzymes of ascorbate-glutathione cycle and promotes growth under cadmium stress in tomato. Protoplasma 255:79–93

    Article  PubMed  CAS  Google Scholar 

  • Ahmad P, Ahanger MA, Alyemeni MN, Wijaya L, Alam P, Ashraf M (2018b) Mitigation of sodium chloride toxicity in Solanum lycopersicum L. by supplementation of jasmonic acid and nitric oxide. J Plant Interact 13(1):64–72

    Article  CAS  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  PubMed  CAS  Google Scholar 

  • Bai X, Yang L, Yang Y, Ahmad P, Yang Y, Hu X (2011) Deciphering the protective role of nitric oxide against salt stress at the physiological and proteomic levels in maize. J Proteom Res 10(10):4349–4364

    Article  CAS  Google Scholar 

  • Boogar AR, Salehi H, Jowkar A (2014) Exogenous nitric oxide alleviates oxidative damage in turfgrasses under drought stress. S Afr J Bot 92:78–82

    Article  CAS  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  PubMed  CAS  Google Scholar 

  • Couée I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459

    Article  PubMed  CAS  Google Scholar 

  • De Souza Miranda R, Gomes-Filho E, Prisco JT, Alvarez-Pizarro JC (2016) Ammonium improves tolerance to salinity stress in Sorghum bicolor plants. Plant Growth Regul 78:121–131

    Article  CAS  Google Scholar 

  • Del Carmen Martínez-Ballesta M, Bastías E, Carvajal M (2008) Combined effect of boron and salinity on water transport: the role of aquaporins. Plant Signal Behav 3:844–845

    Article  PubMed  PubMed Central  Google Scholar 

  • Esringu A, Kant C, Yildirim E, Karlidag H, Turan M (2011) Ameliorative effect of foliar nutrient supply on growth, inorganic ions, membrane permeability, and leaf relative water content of physalis plants under salinity stress. Commun Soil Sci Plant Anal 42:408–423

    Article  CAS  Google Scholar 

  • Fatma M, Masood A, Per TS, Khan NA (2016) Nitric oxide alleviates salt stress inhibited photosynthetic performance by interacting with sulfur assimilation in mustard. Front Plant Sci 7:521

    Article  PubMed  PubMed Central  Google Scholar 

  • Gadelha CG, de Souza Miranda R, Alencar NLM, Costa JH, Prisco JT, Gomes-Filho E (2017) Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation. J Plant Physiol 212:69–79

    Article  PubMed  CAS  Google Scholar 

  • Grattan SR, Grieve CM (1994) Mineral nutrient acquisition and response by plants grown in saline environments. In: Passarakil M (ed) Handbook of plant and crop stress, vol 38. Marcel Dekker, New York, pp 203–226

    Google Scholar 

  • Guerfel M, Baccouri O, Boujnah D, Chaïbi W, Zarrouk M (2009) Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Sci Hort 119:257–263

    Article  CAS  Google Scholar 

  • Guo Y, Tian Z, Yan D, Zhang J, Qin P (2009) Effects of nitric oxide on salt stress tolerance in Kosteletzkya virginica. Life Sci J 6(1):67–75

    CAS  Google Scholar 

  • Habib N, Ashraf M, Shahbaz M (2013) Effect of exogenously applied nitric oxide on some key physiological attributes of rice (Oryza sativa L.) plants under salt stress. Pak J Bot 45:1563–1569

    CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Rahman A, Inafuku M, Oku H, Fujita MJP (2018) Exogenous nitric oxide donor and arginine provide protection against short-term drought stress in wheat seedlings. Physiol Mol Biol Plants 24:993–1004

    Article  PubMed  CAS  Google Scholar 

  • Hayat S, Yadav S, Wani AS, Irfan M, Ahmad A (2011) Nitric oxide effects on photosynthetic rate, growth, and antioxidant activity in tomato. Int J Veg Sci 17:333–348

    Article  Google Scholar 

  • Helrich K (1990) Official methods of analysis of the association of official analytical chemists. AOAC, Washington

    Google Scholar 

  • Idrees M, Naeem M, Khan MN, Aftab T, Khan MMA (2012) Alleviation of salt stress in lemongrass by salicylic acid. Protoplasma 249:709–720

    Article  PubMed  CAS  Google Scholar 

  • Jabbarzadeh M, Tehranifar A, Amiri J, Abedy B (2017) Investigation on the protective role of nitric oxide in reducing damages induced by salinity stress in Calendula officinalis L. J Hort Sci 30:185–191

    Google Scholar 

  • Lin Y, Liu Z, Shi Q, Wang X, Wei M, Yang F (2012) Exogenous nitric oxide (NO) increased antioxidant capacity of cucumber hypocotyl and radicle under salt stress. Sci Hortic 142:118–127

    Article  CAS  Google Scholar 

  • Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HS, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626–632

    Article  PubMed  CAS  Google Scholar 

  • Liu HY, Sun WN, Su WA, Tang ZC (2006) Co-regulation of water channels and potassium channels in rice. Physiol Plant 128:58–69

    Article  CAS  Google Scholar 

  • Liu S, Dong Y, Xu L, Kong J (2014) Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Growth Regul 73:67–78

    Article  CAS  Google Scholar 

  • Man D, Bao Y-X, Han L-B, Zhang X (2011) Drought tolerance associated with proline and hormone metabolism in two tall fescue cultivars. Hort Sci 46:1027–1032

    Article  Google Scholar 

  • Marschner H (2012) Mineral nutrition of higher plants. Academic Press, San Diego

    Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • Misra N, Saxena P (2009) Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Sci 177:181–189

    Article  CAS  Google Scholar 

  • Molinari HBC, Marur CJ, Daros E, De Campos MKF, De Carvalho JFRP, Pereira LFP, Vieira LGE (2007) Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plant 130:218–229

    Article  CAS  Google Scholar 

  • Munns R, Gardner P, Tonnet M, Rawson H (1988) Growth and development in NaCl-treated plants. II. Do Na+ or Cl concentrations in dividing or expanding tissues determine growth in barley? Funct Plant Biol 15:529–540

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (2016) Intracellular redox compartmentation and ROS-related communication in regulation and signaling. Plant Physiol 171:1581–1592

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ors S, Ekinci M, Yildirim E, Sahin U (2016) Changes in gas exchange capacity and selected physiological properties of squash seedlings (Cucurbita pepo L.) under well-watered and drought stress conditions. Arch Agron Soil Sci 62:1700–1710

    Article  CAS  Google Scholar 

  • Semiz GD, Suarez DL, Ünlükara A, Yurtseven E (2014) Interactive effects of salinity and N on pepper (Capsicum annuum L.) yield, water use efficiency and root zone and drainage salinity. J Plant Nutr 37:595–610

    Article  CAS  Google Scholar 

  • Shams M, Yildirim E, Ekinci M, Turan M, Dursun A, Parlakova F, Kul R (2016) Exogenously applied glycine betaine regulates some chemical characteristics and antioxidative defence systems in lettuce under salt stress. Hort Environ Biotechnol 57:225–231

    Article  CAS  Google Scholar 

  • Shams M, Yildirim E, Agar G, Ercisli S, Dursun A, Ekinci M, Raziye K (2018) Nitric oxide alleviates copper toxicity in germinating seed and seedling growth of Lactuca sativa L. Not Bot Hort Agrobot Cluj Napoca 46(1):167–172

    Article  CAS  Google Scholar 

  • Shi S, Wang G, Wang Y, Zhang L, Zhang L (2005) Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. Nitric Oxide 13:1–9

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Basalah MO (2011) Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248(3):447–455

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wu X, Zhu W, Zhang H, Ding H, Zhang HJ (2011) Exogenous nitric oxide protects against salt-induced oxidative stress in the leaves from two genotypes of tomato (Lycopersicom esculentum Mill.). Acta Physiol Plant 33:1199–1209

    Article  CAS  Google Scholar 

  • Yadu S, Dewangan TL, Chandrakar V, Keshavkant SJP (2017) Imperative roles of salicylic acid and nitric oxide in improving salinity tolerance in Pisum sativum L. Physiol Mol Biol Plants 23:43–58

    Article  PubMed  CAS  Google Scholar 

  • Yildirim E, Güvenç İ (2006) Salt tolerance of pepper cultivars during germination and seedling growth. Turk J Agric For 30:347–353

    CAS  Google Scholar 

  • Yildirim E, Karlidag H, Turan M (2009) Mitigation of salt stress in strawberry by foliar K, Ca and Mg nutrient supply. Plant Soil Environ 55:213–221

    Article  CAS  Google Scholar 

  • Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14:7405–7432

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang Y, Wang L, Liu Y, Zhang Q, Wei Q, Zhang W (2006) Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na +/H + antiport in the tonoplast. Planta 224:545–555. https://doi.org/10.1007/s00425-006-0242-z

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate Atatürk University, Scientific Research Projects Foundation for generous financial support (Project Number 2015/161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ertan Yildirim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shams, M., Ekinci, M., Ors, S. et al. Nitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulation. Physiol Mol Biol Plants 25, 1149–1161 (2019). https://doi.org/10.1007/s12298-019-00692-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-019-00692-2

Keywords

Navigation