Skip to main content

Advertisement

Log in

Cytotoxic and Apoptotic Effects of Tin(IV) Complexes Containing a Schiff Base Derived from Cephalexin on a Breast Cancer Cell Line

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Metal complexes containing heterocycles have wide pharmaceutical and medicinal applications. The biological activities of the complexes are influenced by a range of factors, including the identity of the ligands coordinated to the tin ion and the heteroatoms contained in them. Additionally, stabilizing the bonds between the tin atom and the ligand impacts the effectiveness of organotin complexes as biologically active molecules. This study involves the synthesis of new metal complexes and their evaluation for cytotoxic and apoptotic effects against human breast cancer cells (MCF-7). The reaction of cephalexin and 4-(dimethylamino)benzaldehyde in boiling methanol gave the corresponding Schiff base in a good yield. Subsequently, the reactions of disubstituted (methyl, butyl, and phenyl) tin chlorides and the Schiff base in boiling methanol produced the corresponding organotin(IV) complexes in high yields. The effect of the synthesized organotin complexes on MCF-7 was assessed. Based on the half-maximal inhibitory concentration (IC50) results, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay proved that all the organotin complexes effectively suppressed cancer growth. The dibutyl derivative of the three complexes tested had higher anticancer activity against MCF-7 cells than the dimethyl and diphenyl compounds. The IC50 values for the synthesized tin complexes ranged between 95 and 71 μg/mL. Based on the concentration of the complex, a high content screening technique (HCS) assay showed a decrease in MCF-7 cell line cell viability. This decrease was proportional to the viable cell count, membrane permeability, total nuclear intensity, mitochondrial membrane potential, and cytochrome C levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets associated with the current study are available from the corresponding author upon request.

References

  1. Joshi R, Tomar N, Pokharia S, Joshi I. Recent advancements in organotin(IV) complexes of drugs: synthesis, characterization, and application. Results Chem. 2023;5:100955. https://doi.org/10.1016/j.rechem.2023.100955.

    Article  CAS  Google Scholar 

  2. Saloutin VI, Edilova YO, Kudyakova YS, Burgart YV, Bazhin DN. Heterometallic molecular architectures based on fluorinated β-diketone ligands. Molecules. 2022;27:7894. https://doi.org/10.3390/molecules27227894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gamberi T, Hanif M. Metal-based complexes in cancer treatment. Biomedicines. 2022;10:2573. https://doi.org/10.3390/biomedicines10102573.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Riccardi C, Piccolo M. Metal-based complexes in cancer. Int J Mol Sci. 2023;24:7289. https://doi.org/10.3390/ijms24087289.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Banerjee S, Banerjee S. Metal-based complexes as potential anti-cancer agents. Anticancer Agents Med Chem. 2022;22:2684–707. https://doi.org/10.2174/1871520622666220331085144.

    Article  CAS  PubMed  Google Scholar 

  6. Rasli NR, Hamid A, Awang N, Kamaludin NF. Series of organotin(IV) compounds with different dithiocarbamate ligands induced cytotoxicity, apoptosis, and cell cycle arrest on Jurkat E6.1 T acute lymphoblastic leukemia cells. Molecules. 2023;28:3376. https://doi.org/10.3390/molecules28083376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoch M. Organotin compounds in the environment—An overview. Appl Geochem. 2001;16:719–43. https://doi.org/10.1016/S0883-2927(00)00067-6.

    Article  CAS  Google Scholar 

  8. Sánchez-Vergara ME, Hamui L, Gómez E, Chans GM, Galván-Hidalgo JM. Design of promising heptacoordinated organotin (IV) complexes-PEDOT: PSS-based composite for new-generation optoelectronic devices applications. Polymers. 2021;13:1023. https://doi.org/10.3390/polym13071023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smolyaninov IV, Poddel’sky AI, Burmistrova DA, Voronina YK, Pomortseva NP, Polovinkina MA, et al. The synthesis and biological activity of organotin complexes with thio-Schiff bases bearing phenol fragments. Int J Mol Sci. 2023;24:8319. https://doi.org/10.3390/ijms24098319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Debnath P, Debnath P, Roy M, Sieroń L, Maniukiewicz W, Aktar T, Maiti D, et al. Novel organotin(IV) complexes of 2-[4-hydroxy-3-((2-hydroxyethylimino)methyl)phenylazo]benzoic acid: synthesis, structure, noncovalent interactions and in vitro antibacterial activity. Crystals. 2022;12:1582. https://doi.org/10.3390/cryst12111582.

    Article  CAS  Google Scholar 

  11. Naoom N, Yousif E, Ahmed DS, Kariuki BM, El-Hiti GA. Synthesis of methyldopa–tin complexes and their applicability as photostabilizers for the protection of polyvinyl chloride against photolysis. Polymers. 2022;14:4590. https://doi.org/10.3390/polym14214590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fadhil M, Yousif E, Ahmed DS, Kariuki BM, El-Hiti GA. Synthesis and application of levofloxacin–tin complexes as new photostabilizers for polyvinyl chloride. Polymers. 2022;14:3720. https://doi.org/10.3390/polym14183720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fadhil M, Yousif E, Ahmed DS, Mohammed A, Hashim H, Ahmed A, et al. Synthesis of new norfloxacin–tin complexes to mitigate the effect of ultraviolet-visible irradiation in polyvinyl chloride films. Polymers. 2022;14:2812. https://doi.org/10.3390/polym14142812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hadi AG, Baqir SJ, Ahmed DS, El-Hiti GA, Hashim H, Ahmed A, et al. Substituted organotin complexes of 4-methoxybenzoic acid for reduction of poly(vinyl chloride) photodegradation. Polymers. 2021;13:3946. https://doi.org/10.3390/polym13223946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Niu L, Li Y, Li Q. Medicinal properties of organotin compounds and their limitations caused by toxicity. Inorganica Chim Acta. 2014;423:2–13. https://doi.org/10.1016/j.ica.2014.05.007.

    Article  CAS  Google Scholar 

  16. Devi J, Yadav J. Recent advancements in organotin(IV) complexes as potential anticancer agents. Anticancer Agents Med Chem. 2018;18:335–53. https://doi.org/10.2174/1871520617666171106125114.

    Article  CAS  PubMed  Google Scholar 

  17. Annuar SNS, Kamaludin NF, Awang N, Chan KM. Cellular basis of organotin(IV) derivatives as anticancer metallodrugs: a review. Front Chem. 2021;9:657599. https://doi.org/10.3389/fchem.2021.657599.

    Article  CAS  Google Scholar 

  18. Muhammad N, Ahmad M, Sirajuddin M, Ali Z, Tumanov N, Wouters J, Chafik A, et al. Synthesis, characterization, biological activity and molecular docking studies of novel organotin(IV) carboxylates. Front Pharmacol. 2022;13:864336. https://doi.org/10.3389/fphar.2022.864336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Davies AG, Gielen M, Pannell KH, Tiekink ERT. Tin in organic synthesis. In: Davies AG, Gielen M, Pannell KH, Tiekink ERT, editors. Tin Chemistry Fundamentals, Frontiers, and Applications. New York: John Wiley & Sons; 2008. p. 497–665.

    Chapter  Google Scholar 

  20. Pantelić NĐ, Zmejkovski BB, Žižak Ž, Banjac NR, Božić BĐ, Stanojković TP, Kaluđerović GN. Design and in vitro biological evaluation of a novel organotin(IV) complex with 1-(4-carboxyphenyl)-3-ethyl-3-methylpyrrolidine-2,5-dione. J Chem. 2019;2019:2905840. https://doi.org/10.1155/2019/2905840.

    Article  CAS  Google Scholar 

  21. Indumathy R, Radhika S, Kanthimathi M, Weyhermuller T, Unni NB. Cobalt complexes of terpyridine ligand: crystal structure and photocleavage of DNA. J Inorg Biochem. 2007;101:434–43. https://doi.org/10.1016/j.jinorgbio.2006.11.002.

    Article  CAS  PubMed  Google Scholar 

  22. Butt AF, Ahmed MN, Bhatti MH, Choudhary MA, Ayub K, Tahir MN, Mahmood T. Synthesis, structural properties, DFT studies, antimicrobial activities and DNA binding interactions of two newly synthesized organotin(IV) carboxylates. J Mol Struct. 2019;1191:291–300. https://doi.org/10.1016/j.molstruc.2019.04.066.

    Article  CAS  Google Scholar 

  23. Sirajuddin M, Ali S, Tahir MN. Organotin(IV) derivatives based on 2-((2-methoxyphenyl)carbamoyl)benzoic acid: synthesis, spectroscopic characterization, assessment of antibacterial, DNA interaction, anticancer and antileishmanial potentials. J Mol Struct. 2021;1229:129600. https://doi.org/10.1016/j.molstruc.2020.129600.

    Article  CAS  Google Scholar 

  24. Xiao X, Wang Z, Zhao M, Li J, Hu M, He Y, Lai H, et al. A 24-membered macrocyclic triorganotin(IV) carboxylate: synthesis, characterization, crystal structure, and antitumor activity. J Mol Struct. 2020;1216:128255. https://doi.org/10.1016/j.molstruc.2020.128255.

    Article  CAS  Google Scholar 

  25. Hong M, Yang Y, Li C, Xu L, Li D, Li C-Z. Study of the effect of molecular structure and alkyl groups bound with tin(iv) on their cytotoxicity of organotin(IV) 2-phenyl-4-selenazole carboxylates. RSC Adv. 2015;5:102885–94. https://doi.org/10.1039/c5ra18445b.

    Article  CAS  Google Scholar 

  26. Gielen M. Tin chemistry: fundamentals, frontiers, and applications. West Sussex, UK: John Wiley & Sons; 2008.

    Google Scholar 

  27. Hadjikakou S, Hadjiliadis N. Antiproliferative and anti-tumor activity of organotin compounds. Coord Chem Rev. 2009;253:235–49. https://doi.org/10.1016/j.ccr.2007.12.026.

    Article  CAS  Google Scholar 

  28. Sirajuddin M, Ali S, Haider A, Shah NA, Shah A, Khan MR. Synthesis, characterization, biological screenings and interaction with calf thymus DNA as well as electrochemical studies of adducts formed by azomethine [2-((3,5-dimethylphenylimino)methyl)phenol] and organotin(IV) chlorides. Polyhedron. 2012;40:19–31. https://doi.org/10.1016/j.poly.2012.03.048.

    Article  CAS  Google Scholar 

  29. Ettouhami A, Yahyi A, El Mejdoubi A, El Bali B, Siddiq S, Noureen S, et al. Diorganotin(IV) derivative of 2-thiophene acetic acid: characterizations and biological activities of {[n-Bu2SnO2C–CH2–C4H3S]2O}2. Med Chem Res. 2012;21:3607–14. https://doi.org/10.1007/s00044-011-9916-6.

    Article  CAS  Google Scholar 

  30. Basu Baul TS. Antimicrobial activity of organotin(IV) compounds: a review. Appl Organometal Chem. 2008;22:195–204. https://doi.org/10.1002/aoc.1378.

    Article  CAS  Google Scholar 

  31. Lallemand EA, Zemirline C, Toutain P-L, Bousquet-Melou A, Ferran AA, Boullier S. Dynamic interactions between cephalexin and macrophages on different Staphylococcus aureus inoculum sizes: a tripartite in vitro model. BMC Vet Res. 2021;17:23. https://doi.org/10.1186/s12917-021-02746-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Abu-Dief AM, Mohamed IMA. A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef Univ J Basic Appl Sci. 2015;4:119–33. https://doi.org/10.1016/j.bjbas.2015.05.004.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Boulechfar C, Ferkous H, Delimi A, Djedouani A, Kahlouche A, Boublia A, et al. Schiff bases and their metal complexes: a review on the history, synthesis, and applications Inorg. Chem Commun. 2023;150:110451. https://doi.org/10.1016/j.inoche.2023.110451.

    Article  CAS  Google Scholar 

  34. Kamaludin NF, Zakaria SA, Awang N, Mohamad R, Pim NU. Cytotoxicity assessment of organotin (IV)(2-metoxyethyl)methyldithiocarbamate compounds in human leukemia cell lines. Oriental J Chem. 2017;33:1756. https://doi.org/10.13005/ojc/330420.

    Article  CAS  Google Scholar 

  35. Li S, Xia M. Review of high-content screening applications in toxicology. Arch Toxicol. 2019;93:3387–96. https://doi.org/10.1007/s00204-019-02593-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Al-Ezzy RM, Alshanon AF, Khalaf HM. Studying some cytotoxic and cytogenetic potentials of Dandelion methanolic extract on MCF-7 cancer cell line: an in vitro study. Iraqi J Sci. 2023;64:1160–70. https://doi.org/10.24996/ijs.2023.64.3.12.

    Article  Google Scholar 

  37. Anacona JR, Rodriguez JL, Camus J. Synthesis, characterization and antibacterial activity of a Schiff base derived from cephalexin and sulphathiazole and its transition metal complexes. Spectrochim Acta A Mol Biomol Spectrosc. 2014;129:96–102. https://doi.org/10.1016/j.saa.2014.03.019.

    Article  CAS  PubMed  Google Scholar 

  38. Romanenko NR, Kuzmin AV, Khasanov SS, Faraonov MA, Yudanova EI, Nakano Y. Complexes of transition metal carbonyl clusters with tin(II) phthalocyanine in neutral and radical anion states: methods of synthesis, structures and properties. Dalton Trans. 2022;51:2226–37. https://doi.org/10.1039/D1DT04061H.

    Article  CAS  PubMed  Google Scholar 

  39. Jamila K, Wajidb R, Bakhtiarb M, Danish M. Biologically active organotin(IV) Schiff base complexes. J Iran Chem Soc. 2010;7:495–9. https://doi.org/10.1007/BF03246037.

    Article  Google Scholar 

  40. Hussain Sh, Ali S, Shahzadi S, Sharma SK, Qanungo K, Shahid M. Synthesis, characterization, semiempirical and biological activities of organotin(IV) carboxylates with 4-piperidinecarboxylic acid. Bioinorg Chem Appl. 2014;2014:959203. https://doi.org/10.1155/2014/959203.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yin H, Liu H, Hong M. Synthesis, structural characterization and DNA-binding properties of organotin(IV) complexes based on Schiff base ligands derived from 2-hydroxy-1-naphthaldy and 3- or 4-aminobenzoic acid. J Organomet Chem. 2012;713:11–9. https://doi.org/10.1016/j.jorganchem.2012.03.027.

    Article  CAS  Google Scholar 

  42. Xiao X, Liang J, Xie J, Liu X, Zhu D, Dong Y. Organotin(IV) carboxylates based on 2-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)acetic acid: syntheses, crystal structures, luminescent properties and antitumor activities. J Mol Struct. 2017;1146:233–41. https://doi.org/10.1016/j.molstruc.2017.05.141.

    Article  CAS  Google Scholar 

  43. Wang L, Kefalidis CE, Roisnel T, Sinbandhit S, Maron L, Carpentier JF, et al. Structure vs 119Sn NMR chemical shift in three-coordinated tin(II) complexes: experimental data and predictive DFT computations. Organometallics. 2015;34:2139–50. https://doi.org/10.1021/om5007566.

    Article  CAS  Google Scholar 

  44. Shahid K, Ali S, Shahzadi S, Badshah A, Khan KM, Maharvi GM. Organotin (IV) complexes of aniline derivatives. I. Synthesis, spectral, and antibacterial studies of di- and triorganotin(IV) derivatives of 4-bromomaleanilic acid. Synth React Inorg Met Org Chem. 2003;33:1221–35. https://doi.org/10.1081/SIM-120023490.

    Article  CAS  Google Scholar 

  45. Rehman W, Baloch MK, Badshah A, Ali S. Synthesis and characterization of biologically potent di-organotin(IV) complexes of mono-methyl glutarate. J Chin Chem Soc. 2005;52:231–6. https://doi.org/10.1002/jccs.200500034.

    Article  CAS  Google Scholar 

  46. Rehman W, Baloch MK, Badshah A. Synthesis, spectral characterization and bio-analysis of some organotin(IV) complexes. Eur J Med Chem. 2008;43:2380–5. https://doi.org/10.1016/j.ejmech.2008.01.019.

    Article  CAS  PubMed  Google Scholar 

  47. Barbosa ASL, Guedes JS, da Rozendo Silva D, Meneghetti SMP, Meneghetti MR, da Evelyn Silva A, et al. Synthesis and evaluation of the antibiotic and adjuvant antibiotic potential of organotin(IV) derivatives. J Inorg Biochem. 2018;180:80–8. https://doi.org/10.1016/j.jinorgbio.2017.12.004.

    Article  CAS  PubMed  Google Scholar 

  48. da Silva JPV, Brito YC, Fragoso DMA, Mendes PR, Barbosa ASL, Bortoluzzi JH, et al. Influence of different alkyl and carboxylate substituents on Sn(IV) organometallic catalysts during fatty acid methyl ester production. Cat Commun. 2015;58:204–8. https://doi.org/10.1016/j.catcom.2014.09.010.

    Article  CAS  Google Scholar 

  49. Nikafshar S, Zabihi O, Ahmadi M, Mirmohseni A, Taseidifar M, Naebe M. The effects of UV light on the chemical and mechanical properties of a transparent epoxy-diamine system in the presence of an organic UV absorber. Materials. 2017;10:180. https://doi.org/10.3390/ma10020180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ghasemi M, Turnbull T, Sebastian S, Kempson I. The MTT Assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int J Mol Sci. 2021;22:12827. https://doi.org/10.3390/ijms222312827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hong M, Yin H, Zhang X, Li Ch, Yue C, Cheng S. Di- and tri-organotin(IV) complexes with 2-hydroxy-1-naphthaldehyde 5-chloro-2-hydroxybenzoylhydrazone: synthesis, characterization and in vitro antitumor activities. J Organomet Chem. 2013;724:23–31. https://doi.org/10.1016/j.jorganchem.2012.10.031.

    Article  CAS  Google Scholar 

  52. Al-Rikabi EH, Al-Refai RA, Baqir SJ, Hadi AG, Al-Qayyim AK. Synthesis, structure, and in vitro cytotoxic activity of two organotin complexes of 2-[(2,3-dimethylphenyl)amino] benzoic acid. J Med Chem Sci. 2023;6:1230–8.

    CAS  Google Scholar 

  53. Al-Dulimia AG, Hasan AF, Al-Mogadamy OA. Anti-tumor activity of gold nanoparticles by use high content screening technique (HCS). J Med Life Sci. 2022;4:27–40. https://doi.org/10.21608/jmals.2022.256487.

    Article  Google Scholar 

  54. Al-Saily HM, Al-Halbosiy MMF, Al-Hady FNA. Cytotoxic and apoptotic effects of cyproterone acetate against cancer cells and normal cells. J Biotechnol Res Center. 2019;13:68–74.

    Article  Google Scholar 

  55. Fayadh SM, Mohammed AH. Silver nanoparticles induced apoptosis in papillary and follicular thyroid carcinoma cells. Phys Med. 2022;14:100056. https://doi.org/10.1016/j.phmed.2022.100056.

    Article  Google Scholar 

  56. Al-Shukri AF, Al-Marzook FA, Al-Hammadi NA, Mutlag IH. Antitumor activity of alkaloids extract from Opuntia polyacantha plant using high content screening technique (HCS). Pharmacophore. 2020;11:129–35.

    Google Scholar 

  57. Liu Q, Xie B, Lin S, Liao Q, Deng R, Zhaohua Y. Silicon-containing diorganotin complexes with salicylaldehyde thiosemicarbazone and their anticancer activity. J Chem Sci. 2019;131:37. https://doi.org/10.1007/s12039-019-1650-5.

    Article  CAS  Google Scholar 

  58. Baul TSB, Basu S, de Vos D, Linden A. Amino acetate functionalized Schiff base organotin(IV) complexes as anticancer drugs: synthesis, structural characterization, and in vitro cytotoxicity studies. Invest New Drugs. 2009;27:419–31. https://doi.org/10.1007/s10637-008-9189-1.

    Article  CAS  PubMed  Google Scholar 

  59. Pantelića NĐ, Zmejkovskid BB, Božiće B, Dojčinović B, Banjac NR, Wessjohann LA, et al. Synthesis, characterization and in vitro biological evaluation of novel organotin(IV) compounds with derivatives of 2-(5-arylidene-2,4-dioxothiazolidin-3-yl)propanoic acid. J Inorg Biochem. 2020;211:11120. https://doi.org/10.1016/j.jinorgbio.2020.111207.

    Article  CAS  Google Scholar 

  60. Abd Aziz NA, Awang N, Chan KM, Kamaludin NF, Mohamad-Anuar NN. Organotin(IV) dithiocarbamate compounds as anticancer agents: a review of syntheses and cytotoxicity studies. Molecules. 2023;28:5841. https://doi.org/10.3390/molecules28155841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Haezam FN, Awang N, Kamaludin NF, Mohamad R. Synthesis and cytotoxic activity of organotin (IV) diallyldithiocarbamate compounds as anticancer agent towards colon adenocarcinoma cells (HT-29). Saudi J Bio Sci. 2021;28:3160–8. https://doi.org/10.1016/j.sjbs.2021.02.060.

    Article  CAS  Google Scholar 

  62. Ullah H, Previtali V, Mihigo HB, Twamley B, Rauf MK, Javed F, Waseem A, et al. Structure-activity relationships of new organotin(IV) anticancer agents and their cytotoxicity profile on HL-60, MCF-7 and HeLa human cancer cell lines. Eur J Med Chem. 2019;181:111544. https://doi.org/10.1016/j.ejmech.2019.07.047.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Al-Nahrain University for its technical support. G.A.E.-H. acknowledges the support received from the Researchers Supporting Project (number RSP2024R404), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: E.Y., A.A., D.S.A., and G.A.E.-H, methodology: E.Y., A.A., D.S.A., and G.A.E.-H, software: A.E., E.Y., A.A., D.S.A., and G.A.E.-H, validation: A.E., E.Y., A.A., D.S.A., B.M.K., and G.A.E.-H, formal analysis: A.E., E.Y., A.A., D.S.A., B.M.K., and G.A.E.-H, investigation: A.E. and A.A, resources: E.Y. and G.A.E.-H, data curation: A.E., E.Y., A.A., D.S.A., B.M.K., and G.A.E.-H, writing—original draft preparation, A.E., E.Y., A.A., D.S.A., B.M.K., and G.A.E.-H, writing—review and editing, A.E., E.Y., A.A., D.S.A., B.M.K., and G.A.E.-H, visualization, E.Y., and G.A.E.-H, supervision: E.Y, project administration, E.Y, funding acquisition: G.A.E.-H. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Emad Yousif.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erfan, A., Yousif, E., Alshanon, A. et al. Cytotoxic and Apoptotic Effects of Tin(IV) Complexes Containing a Schiff Base Derived from Cephalexin on a Breast Cancer Cell Line. Ind J Clin Biochem (2024). https://doi.org/10.1007/s12291-024-01207-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12291-024-01207-x

Keywords

Navigation