Skip to main content

Advertisement

Log in

Altered Erythrocyte Glycolytic Enzyme Activities in Type-II Diabetes

  • Original Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

The activity of enzymes of glycolysis has been studied in erythrocytes from type-II diabetic patients in comparison with control. RBC lysate was the source of enzymes. In the diabetics the hexokinase (HK) activity increased 50 % while activities of phosphoglucoisomerase (PGI), phosphofructokinase (PFK) and aldolase (ALD) decreased by 37, 75 and 64 % respectively but were still several folds higher than that of HK. Hence, it is possible that in the diabetic erythrocytes the process of glycolysis could proceed in an unimpaired or in fact may be augmented due to increased levels of G6P. The lactate dehydrogenase (LDH) activity was comparatively high in both the groups; the diabetic group showed 85 % increase. In control group the HK, PFK and ALD activities showed strong positive correlation with blood sugar level while PGI activity did not show any correlation. In the diabetic group only PFK activity showed positive correlation. The LDH activity only in the control group showed positive correlation with marginal increase with increasing concentrations of glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alberti KGMM, Press CM. The biochemistry of the complications of diabetes mellitus. In: Keen M, Jarrett J, editors. Complications of diabetes. London: Edward Arnold Ltd.; 1982. p 231–70.

    Google Scholar 

  2. Asgary S, Naderi GA, Sarraf-Zadegan N, Vakili R. The inhibitory effects of pure flavonoids on in vitro protein glycosylation. J Herb Pharmacother. 2002;2:47–55.

    Article  CAS  PubMed  Google Scholar 

  3. Allen DW, Schroeder WA, Balog J. Observations on the chromatographic heterogeneity of normal adult and fetal hemoglobin: a study of the effects of crystallization and chromatography on the heterogeneity and isoleucine content. J Am Chem Soc. 1958;80:1628–34.

    Article  CAS  Google Scholar 

  4. Rahbar S. An abnormal hemoglobin in red cells of diabetics. Clin Chim Acta. 1968;22:296–8.

    Article  CAS  PubMed  Google Scholar 

  5. Trivelli LA, Ranney HM, Lai HT. Hemoglobin components in patients with diabetes mellitus. N Engl J Med. 1971;284:353–7.

    Article  CAS  PubMed  Google Scholar 

  6. Haney DN, Bunn HF. Glycosylation of hemoglobin in vitro: affinity labeling of hemoglobin by glucose-6-phosphate. Proc Natl Acad Sci. 1976;73:3534–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stevens VJ, Vlassara H, Abati A, Cerami A. Nonenzymatic glycosylation of hemoglobin. J Biol Chem. 1977;252:2998–3002.

    CAS  PubMed  Google Scholar 

  8. McDonald MJ, Shapiro R, Bleichman M, Solway J, Bunn HF. Glycosylated minor components of human adult hemoglobin. Purification, identification, and partial structural analysis. J Biol Chem. 1978;253:2327–32.

    CAS  PubMed  Google Scholar 

  9. Tegos C, Beutler E. Red cell glycolytic intermediates in diabetic patients. J Lab Clin Med. 1980;96:85–9.

    CAS  PubMed  Google Scholar 

  10. Fujii S, Beutler E. High glucose concentrations partially release hexokinase from inhibition by glucose 6 phosphate. Proc Natl Acad Sci. 1985;82:1552–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gerber G, Preissler H, Heinrich R, Rapoport SM. Hexokinase of human erythrocytes. Eur J Biochem. 1974;45:39–52.

    Article  CAS  PubMed  Google Scholar 

  12. Sangwan RS, Singh R. Characterization of cytosolic phosphoglucose isomerase from immature wheat (Triticum aestivum L.) endosperm. J Biosci. 1989;14:47–54.

    Article  CAS  Google Scholar 

  13. Katyare SS, Howland JL. Defective allosteric regulation of phosphofructokinase regulation in genetically obese mice. FEBS Lett. 1974;43:17–9.

    Article  CAS  PubMed  Google Scholar 

  14. Richards OC, Rutter WJ. Preparation and properties of yeast aldolase. J Biol Chem. 1961;236:3177–84.

    CAS  PubMed  Google Scholar 

  15. Buhl SN, Jackson KY, Lubinski R, Vanderlinde RE. Effect of reaction initiator on human LDH assay. Clin Chem. 1976;22:1098–9.

    CAS  PubMed  Google Scholar 

  16. Bakhtiari N, Hosseinkhani S, Larijani B, Mohajeri-Tehrani MR, Fallah A. Red blood cell ATP/ADP and nitric oxide: the best vasodilators in diabetic patients. J Diabetes Metab Disord. 2012; 11.

  17. Besch W, Blücher H, Bettin D, Wolf E, Michaelis D, Kohnert KD. Erythrocyte sodium-lithium countertransport, adenosine triphosphatase activity and sodium-potassium fluxes in insulin-dependent diabetes. Int J Clin Lab Res. 1995;25:104–9.

    Article  CAS  PubMed  Google Scholar 

  18. Dave KR, Patel TH, Katyare SS. Insulin or sulfonylurea treatments of the diabetics differentially affect erythrocyte membrane and serum enzymes and extent of protein glycosylation. Indian J Clin Biochem. 2001;16:81–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Flecha FLG, Cbermúdez M, Cédola NV, Gagliardino JJ, Rossi JR. Decreased Ca2+-ATPase activity after glycosylation of erythrocyte membranes in vivo and in vitro. Diabetes. 1990;39:707–11.

    Article  Google Scholar 

  20. Wagner-Britza L, Wang J, Kaestner L, Bernhardt I. Protein kinase Cα and P-Type Ca2+ Channel CaV 2.1 in red blood cell calcium signalling. Cell Physiol Biochem. 2013;31:883–91.

    Article  Google Scholar 

  21. Brown JB, Pedula K, Barzilay J, Herson MK, Latare P. Lactic acidosis rates in type 2 diabetes. Diabetes Care. 1998;21:1659–63.

    Article  CAS  PubMed  Google Scholar 

  22. Diabetes Control and Complication Trial Research Group. The effect of intensive diabetes therapy on the development and progression of neuropathy. Ann Intern Med. 1995;122:561–8.

    Article  Google Scholar 

  23. Fox CJ. Studies of unusual hemoglobin in patients with diabetes mellitus. Br Med J. 1997;2:605–7.

    Article  Google Scholar 

  24. Baynes JW, Monnier VM. The maillard reaction in aging, diabetes, and nutrition: proceedings of an NIH conference on the maillard reaction in aging, diabetes, and nutrition, held in Bethesda, Maryland, September 22–23, Vol. 304, 1988.

  25. Shin S, Ku Y, Babu N, Singh M. Erythrocyte deformability and its variation in diabetes mellitus. Indian J Exp Biol. 2007;45:121–8.

    CAS  PubMed  Google Scholar 

  26. Singh M, Shin S. Changes in erythrocyte aggregation and deformability in diabetes mellitus: a brief review. Indian J Exp Biol. 2009;47:7–15.

    PubMed  Google Scholar 

  27. Chien S. Red cell deformability and its relevance to blood flow. Annu Rev Physiol. 1987;49:177–92.

    Article  CAS  PubMed  Google Scholar 

  28. Paueksakon P, Revelo MP, Ma LJ, Marcantoni C, Fogo AB. Microangiopathic injury and augmented PAI-1 in human diabetic nephropathy. Kidney Int. 2002;61:2142–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Anjali Kelkar for her help in procuring the human blood samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra S. Katyare.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mali, A.V., Bhise, S.S., Hegde, M.V. et al. Altered Erythrocyte Glycolytic Enzyme Activities in Type-II Diabetes. Ind J Clin Biochem 31, 321–325 (2016). https://doi.org/10.1007/s12291-015-0529-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-015-0529-6

Keywords

Navigation