Skip to main content
Log in

Management of Diabetic Ketoacidosis in Children and Adolescents with Type 1 Diabetes Mellitus

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Diabetic ketoacidosis (DKA) is the end result of insulin deficiency in type 1 diabetes mellitus (T1D). Loss of insulin production leads to profound catabolism with increased gluconeogenesis, glycogenolysis, lipolysis, and muscle proteolysis causing hyperglycemia and osmotic diuresis. High levels of counter-regulatory hormones lead to enhanced ketogenesis and the release of ‘ketone bodies’ into the circulation, which dissociate to release hydrogen ions and cause an overwhelming acidosis. Dehydration, hyperglycemia, and ketoacidosis are the hallmarks of this condition. Treatment is effective repletion of insulin, fluids and electrolytes. Newer approaches to early diagnosis, treatment, and prevention may diminish the risk of DKA and its childhood complications including cerebral edema. However, the potential for some technical and pharmacologic advances in the management of T1D to increase DKA events must be recognized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Maahs DM, et al. Rates of diabetic ketoacidosis: international comparison with 49,859 pediatric patients with type 1 diabetes from England, Wales, the US, Austria, and Germany. Diabetes Care. 2015;38(10):1876–82.

    PubMed  CAS  Google Scholar 

  2. Danne T, et al. International consensus on risk management of diabetic ketoacidosis in patients with type 1 diabetes treated with sodium-glucose cotransporter (SGLT) inhibitors. Diabetes Care. 2019;42:1147–54.

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Kanikarla-Marie P, Jain SK. Hyperketonemia and ketosis increase the risk of complications in type 1 diabetes. Free Radic Biol Med. 2016;95:268–77.

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Garber AJ, et al. Hepatic ketogenesis and gluconeogenesis in humans. J Clin Invest. 1974;54(4):981–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Owen OE, et al. Liver and kidney metabolism during prolonged starvation. J Clin Invest. 1969;48(3):574–83.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Fukao T, Lopaschuk GD, Mitchell GA. Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot Essent Fatty Acids. 2004;70(3):243–51.

    PubMed  CAS  Google Scholar 

  7. Jefferies C, et al. 15-year incidence of diabetic ketoacidosis at onset of type 1 diabetes in children from a regional setting (Auckland, New Zealand). Sci Rep. 2015;5:10358.

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Dabelea D, et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA. 2014;311(17):1778–866.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Szypowska A, Skorka A. The risk factors of ketoacidosis in children with newly diagnosed type 1 diabetes mellitus. Pediatr Diabetes. 2011;12(4 Pt 1):302–6.

    PubMed  Google Scholar 

  10. Duca LM, et al. Diabetic ketoacidosis at diagnosis of type 1 diabetes predicts poor long-term glycemic control. Diabetes Care. 2017;40(9):1249–55.

    PubMed  CAS  Google Scholar 

  11. Levy-Marchal C, et al. Geographical variation of presentation at diagnosis of type I diabetes in children: the EURODIAB study. Eur Dibetes Diabetol. 2001;44(Suppl 3):B75–80.

    Google Scholar 

  12. Usher-Smith JA, et al. Variation between countries in the frequency of diabetic ketoacidosis at first presentation of type 1 diabetes in children: a systematic review. Diabetologia. 2012;55(11):2878–94.

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Eyal O, et al. Ketoacidosis in newly diagnosed type 1 diabetes in children and adolescents in israel: prevalence and risk factors. Isr Med Assoc J. 2018;20(2):100–3.

    PubMed  Google Scholar 

  14. Wolfsdorf J, et al. Diabetic ketoacidosis in infants, children, and adolescents: a consensus statement from the American Diabetes Association. Diabetes Care. 2006;29(5):1150–9.

    PubMed  Google Scholar 

  15. Duca LM, et al. Diabetic ketoacidosis at diagnosis of type 1 diabetes and glycemic control over time: the SEARCH for diabetes in youth study. Pediatr Diabetes. 2019;20(2):172–9.

    PubMed  CAS  Google Scholar 

  16. Hekkala A, Knip M, Veijola R. Ketoacidosis at diagnosis of type 1 diabetes in children in northern Finland: temporal changes over 20 years. Diabetes Care. 2007;30(4):861–6.

    PubMed  CAS  Google Scholar 

  17. Usher-Smith JA, et al. Factors associated with the presence of diabetic ketoacidosis at diagnosis of diabetes in children and young adults: a systematic review. BMJ. 2011;343:d4092.

    PubMed  PubMed Central  Google Scholar 

  18. Nakhla M, et al. Transition to adult care for youths with diabetes mellitus: findings from a Universal Health Care System. Pediatrics. 2009;124(6):e1134–e1141141.

    PubMed  Google Scholar 

  19. Booth GL, Hux JE. Relationship between avoidable hospitalizations for diabetes mellitus and income level. Arch Intern Med. 2003;163(1):101–6.

    PubMed  Google Scholar 

  20. Shulman R, et al. Low socioeconomic status is associated with adverse events in children and teens on insulin pumps under a universal access program: a population-based cohort study. BMJ Open Diabetes Res Care. 2016;4(1):e000239.

    PubMed  PubMed Central  Google Scholar 

  21. Shulman R, et al. Insulin pump use and discontinuation in children and teens: a population-based cohort study in Ontario. Canada Pediatr Diabetes. 2017;18(1):33–44.

    PubMed  CAS  Google Scholar 

  22. Zuijdwijk CS, Cuerden M, Mahmud FH. Social determinants of health on glycemic control in pediatric type 1 diabetes. J Pediatr. 2013;162(4):730–5.

    PubMed  Google Scholar 

  23. Hua X, et al. Expenditures and prices of antihyperglycemic medications in the United States: 2002–2013. JAMA. 2016;315(13):1400–2.

    PubMed  PubMed Central  Google Scholar 

  24. QuickStats: Percentage of adults aged ≥ 45 years who reduced or delayed medication to save money in the past 12 months among those who were prescribed medication, by diagnosed diabetes status and age — National Health Interview Survey, 2015. MMWR Morb Mortal Wkly Rep. 2017;66(25):679. https://doi.org/10.15585/mmwr.mm6625a5.

  25. Rosenthal E. When high prices mean needless death. JAMA Intern Med. 2019;179(1):114–5.

    PubMed  Google Scholar 

  26. Miller KM, et al. Evidence of a strong association between frequency of self-monitoring of blood glucose and hemoglobin A1c levels in T1D exchange clinic registry participants. Diabetes Care. 2013;36(7):2009–144.

    PubMed  PubMed Central  Google Scholar 

  27. Hanas R, Ludvigsson J. Hypoglycemia and ketoacidosis with insulin pump therapy in children and adolescents. Pediatr Diabetes. 2006;7(Suppl 4):32–8.

    PubMed  Google Scholar 

  28. Jackman J, et al. Delayed diagnosis and issues with pump usage are the leading causes of diabetic ketoacidosis in children with diabetes living in Newfoundland and Labrador. Can BMC Res Notes. 2015;8:158.

    PubMed  Google Scholar 

  29. Garcia-Garcia E, et al. Long-term use of continuous subcutaneous insulin infusion compared with multiple daily injections of glargine in pediatric patients. J Pediatr Endocrinol Metab. 2007;20(1):37–40.

    PubMed  CAS  Google Scholar 

  30. Burckhardt MA, et al. Real-world outcomes of insulin pump compared to injection therapy in a population-based sample of children with type 1 diabetes. Pediatr Diabetes. 2018;19(8):1459–66.

    PubMed  CAS  Google Scholar 

  31. Al-Hayek AA, et al. Frequency and associated risk factors of recurrent diabetic ketoacidosis among Saudi adolescents with type 1 diabetes mellitus. Saudi Med J. 2015;36(2):216–20.

    PubMed  PubMed Central  Google Scholar 

  32. Chapman J, et al. Recurrent diabetic ketoacidosis. Diabet Med. 1988;5(7):659–61.

    PubMed  CAS  Google Scholar 

  33. Edge JA, et al. The risk and outcome of cerebral oedema developing during diabetic ketoacidosis. Arch Dis Child. 2001;85(1):16.

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Cengiz E, et al. Severe hypoglycemia and diabetic ketoacidosis among youth with type 1 diabetes in the T1D Exchange clinic registry. Pediatr Diabetes. 2013;14(6):447–54.

    PubMed  PubMed Central  Google Scholar 

  35. Mays JA, et al. an evaluation of recurrent diabetic ketoacidosis, fragmentation of care, and mortality across Chicago. Illinois Diabetes Care. 2016;39(10):1671–6.

    PubMed  Google Scholar 

  36. Tremblay F, Dubois MJ, Marette A. Regulation of GLUT4 traffic and function by insulin and contraction in skeletal muscle. Front Biosci. 2003;8:d1072–d10841084.

    PubMed  CAS  Google Scholar 

  37. Adrogue HJ, et al. Plasma acid-base patterns in diabetic ketoacidosis. N Engl J Med. 1982;307(26):1603–10.

    PubMed  CAS  Google Scholar 

  38. Hoffman WH, et al. Cytokine response to diabetic ketoacidosis and its treatment. Clin Immunol. 2003;108(3):175–81.

    PubMed  CAS  Google Scholar 

  39. Kawamori D. Exploring the molecular mechanisms underlying alpha- and beta-cell dysfunction in diabetes. Diabetol Int. 2017;8(3):248–56.

    PubMed  PubMed Central  Google Scholar 

  40. Yosten GLC. Alpha cell dysfunction in type 1 diabetes. Peptides. 2018;100:54–60.

    PubMed  CAS  Google Scholar 

  41. MacGillivray MH, Bruck E, Voorhess ML. Acute diabetic ketoacidosis in children: role of the stress hormones. Pediatr Res. 1981;15(2):99–106.

    PubMed  CAS  Google Scholar 

  42. Voss TS, et al. Substrate metabolism, hormone and cytokine levels and adipose tissue signalling in individuals with type 1 diabetes after insulin withdrawal and subsequent insulin therapy to model the initiating steps of ketoacidosis. Diabetologia. 2019;62(3):494–503.

    PubMed  CAS  Google Scholar 

  43. Karslioglu French E, Donihi AC, Korytkowski MT. Diabetic ketoacidosis and hyperosmolar hyperglycemic syndrome: review of acute decompensated diabetes in adult patients. BMJ. 2019;365:l1114.

    PubMed  Google Scholar 

  44. Miles JM, et al. Effects of acute insulin deficiency on glucose and ketone body turnover in man: evidence for the primacy of overproduction of glucose and ketone bodies in the genesis of diabetic ketoacidosis. Diabetes. 1980;29(11):926–30.

    PubMed  CAS  Google Scholar 

  45. Miles JM, et al. Effects of free fatty acid availability, glucagon excess, and insulin deficiency on ketone body production in postabsorptive man. J Clin Invest. 1983;71(6):1554–611.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Moller N, et al. Renal amino acid, fat and glucose metabolism in type 1 diabetic and non-diabetic humans: effects of acute insulin withdrawal. Diabetologia. 2006;49(8):1901–8.

    PubMed  CAS  Google Scholar 

  47. Holm C, et al. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu Rev Nutr. 2000;20:365–93.

    PubMed  CAS  Google Scholar 

  48. Taborsky GJ Jr. The physiology of glucagon. J Diabetes Sci Technol. 2010;4(6):1338–444.

    PubMed  PubMed Central  Google Scholar 

  49. Gromada J, Franklin I, Wollheim CB. Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr Rev. 2007;28(1):84–116.

    PubMed  CAS  Google Scholar 

  50. Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev. 1999;15(6):412–26.

    PubMed  CAS  Google Scholar 

  51. Kamel KS, Halperin ML. Acid–base problems in diabetic ketoacidosis. N Engl J Med. 2015;372(6):546–54.

    PubMed  Google Scholar 

  52. Gallo de Moraes A, Surani S. Effects of diabetic ketoacidosis in the respiratory system. World J Diabetes. 2019;10(1):16–22.

    PubMed  PubMed Central  Google Scholar 

  53. Stentz FB, et al. Proinflammatory cytokines, markers of cardiovascular risks, oxidative stress, and lipid peroxidation in patients with hyperglycemic crises. Diabetes. 2004;53(8):2079–86.

    PubMed  CAS  Google Scholar 

  54. Doi Y, et al. Relationship between C-reactive protein and glucose levels in community-dwelling subjects without diabetes: the Hisayama Study. Diabetes Care. 2005;28(5):1211–3.

    PubMed  CAS  Google Scholar 

  55. Aljada A, et al. Insulin inhibits the pro-inflammatory transcription factor early growth response gene-1 (Egr)-1 expression in mononuclear cells (MNC) and reduces plasma tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) concentrations. J Clin Endocrinol Metab. 2002;87(3):1419–22.

    PubMed  CAS  Google Scholar 

  56. Chaudhuri A, Umpierrez GE. Oxidative stress and inflammation in hyperglycemic crises and resolution with insulin: implications for the acute and chronic complications of hyperglycemia. J Diabetes Complications. 2012;26(4):257–8.

    PubMed  PubMed Central  Google Scholar 

  57. Joseph F, et al. Starvation-induced true diabetic euglycemic ketoacidosis in severe depression. J Gen Intern Med. 2009;24(1):129–31.

    PubMed  Google Scholar 

  58. Modi A, Agrawal A, Morgan F. Euglycemic diabetic ketoacidosis: a review. Curr Diabetes Rev. 2017;13(3):315–21.

    PubMed  CAS  Google Scholar 

  59. Chico M, Levine SN, Lewis DF. Normoglycemic diabetic ketoacidosis in pregnancy. J Perinatol. 2008;28(4):310–2.

    PubMed  CAS  Google Scholar 

  60. Sloan G, Ali A, Webster J. A rare cause of metabolic acidosis: ketoacidosis in a non-diabetic lactating woman. Endocrinol Diabetes Metab Case Rep. 2017;17-0073. https://doi.org/10.1530/EDM-17-0073.

  61. Rosenstock J, Ferrannini E. Euglycemic diabetic ketoacidosis: a predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care. 2015;38(9):1638–42.

    PubMed  CAS  Google Scholar 

  62. Kuppermann N, et al. Clinical trial of fluid infusion rates for pediatric diabetic ketoacidosis. N Engl J Med. 2018;378(24):2275–87.

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Sottosanti M, et al. Dehydration in children with diabetic ketoacidosis: a prospective study. Arch Dis Child. 2012;97(2):96–100.

    PubMed  Google Scholar 

  64. Wolfsdorf JI, et al. ISPAD Clinical Practice Consensus Guidelines 2018: diabetic ketoacidosis and the hyperglycemic hyperosmolar state. Pediatr Diabetes. 2018;19(Suppl 27):155–77.

    PubMed  Google Scholar 

  65. Smith CP, et al. Ketoacidosis occurring in newly diagnosed and established diabetic children. Acta Paediatr. 1998;87(5):537–41.

    PubMed  CAS  Google Scholar 

  66. Lone SW, et al. Frequency, clinical characteristics and outcome of diabetic ketoacidosis in children with type-1 diabetes at a tertiary care hospital. J Pak Med Assoc. 2010;60(9):725–9.

    PubMed  Google Scholar 

  67. Usman A. Initial potassium replacement in diabetic ketoacidosis: the unnoticed area of gap. Front Endocrinol (Lausanne). 2018;9:109.

    Google Scholar 

  68. Ditzel J, Lervang HH. Disturbance of inorganic phosphate metabolism in diabetes mellitus: temporary therapeutic intervention trials. Diabetes Metab Syndr Obes. 2009;2:173–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  69. Riley MS, Schade DS, Eaton RP. Effects of insulin infusion on plasma phosphate in diabetic patients. Metabolism. 1979;28(3):191–4.

    PubMed  CAS  Google Scholar 

  70. Ditzel J, Lervang HH. Disturbance of inorganic phosphate metabolism in diabetes mellitus: clinical manifestations of phosphorus-depletion syndrome during recovery from diabetic ketoacidosis. Diabetes Metab Syndr Obes. 2010;3:319–24.

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Edge JA, Ford-Adams ME, Dunger DB. Causes of death in children with insulin dependent diabetes 1990–1996. Arch Dis Child. 1999;81(4):318.

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Glaser NS, et al. Frequency of sub-clinical cerebral edema in children with diabetic ketoacidosis. Pediatr Diabetes. 2006;7(2):75–80.

    PubMed  Google Scholar 

  73. Lawrence SE, et al. Population-based study of incidence and risk factors for cerebral edema in pediatric diabetic ketoacidosis. J Pediatr. 2005;146(5):688–92.

    PubMed  Google Scholar 

  74. Glaser N, et al. Risk factors for cerebral edema in children with diabetic ketoacidosis. N Engl J Med. 2001;344(4):264–9.

    PubMed  CAS  Google Scholar 

  75. Duck SC, Wyatt DT. Factors associated with brain herniation in the treatment of diabetic ketoacidosis. J Pediatr. 1988;113(1 Pt 1):10–4.

    PubMed  CAS  Google Scholar 

  76. Edge JA, et al. The UK case-control study of cerebral oedema complicating diabetic ketoacidosis in children. Diabetologia. 2006;49(9):2002–9.

    PubMed  CAS  Google Scholar 

  77. Glaser NS, et al. Mechanism of cerebral edema in children with diabetic ketoacidosis. J Pediatr. 2004;145(2):164–71.

    PubMed  Google Scholar 

  78. Glaser NS, Buonocore MH. Cerebral metabolic alterations in children with diabetic ketoacidosis. Diabet Med. 2005;22(5):515–6.

    PubMed  CAS  Google Scholar 

  79. Glaser NS, et al. Cerebral hyperemia measured with near infrared spectroscopy during treatment of diabetic ketoacidosis in children. J Pediatr. 2013;163(4):1111–6.

    PubMed  PubMed Central  Google Scholar 

  80. Hoffman WH, Stamatovic SM, Andjelkovic AV. Inflammatory mediators and blood brain barrier disruption in fatal brain edema of diabetic ketoacidosis. Brain Res. 2009;1254:138–48.

    PubMed  CAS  Google Scholar 

  81. Woo M, et al. Dynamic regulation of plasma matrix metalloproteinases in human diabetic ketoacidosis. Pediatr Res. 2016;79(2):295–300.

    PubMed  CAS  Google Scholar 

  82. Hoffman WH, et al. Interstitial pulmonary edema in children and adolescents with diabetic ketoacidosis. J Diabetes Complications. 1998;12(6):314–20.

    PubMed  CAS  Google Scholar 

  83. Perez Rueda C, et al. Noncardiogenic pulmonary edema associated with diabetic ketoacidosis. J Pediatr. 1988;113(1 Pt 1):161.

    PubMed  CAS  Google Scholar 

  84. Carl GF, et al. Diabetic ketoacidosis promotes a prothrombotic state. Endocr Res. 2003;29(1):73–82.

    PubMed  CAS  Google Scholar 

  85. Gutierrez JA, et al. Femoral central venous catheter-associated deep venous thrombosis in children with diabetic ketoacidosis. Crit Care Med. 2003;31(1):80–3.

    PubMed  Google Scholar 

  86. Worly JM, et al. Deep venous thrombosis in children with diabetic ketoacidosis and femoral central venous catheters. Pediatrics. 2004;113(1 Pt 1):e57–60.

    PubMed  Google Scholar 

  87. Haddad NG, Croffie JM, Eugster EA. Pancreatic enzyme elevations in children with diabetic ketoacidosis. J Pediatr. 2004;145(1):122–4.

    PubMed  CAS  Google Scholar 

  88. Tsuang W, et al. Hypertriglyceridemic pancreatitis: presentation and management. Am J Gastroenterol. 2009;104(4):984–91.

    PubMed  CAS  Google Scholar 

  89. Buckingham BA, Roe TF, Yoon JW. Rhabdomyolysis in diabetic ketoacidosis. Am J Dis Child. 1981;135(4):352–4.

    PubMed  CAS  Google Scholar 

  90. Mercer S, Hanks L. Ashraf A (2016) Rhabdomyolysis in pediatric patients with diabetic ketoacidosis or hyperglycemic hyperosmolar state: a case series. Glob Pediatr Health. 2016;3:2333794X16671391.

    PubMed  PubMed Central  Google Scholar 

  91. Casteels K, et al. Rhabdomyolysis in diabetic ketoacidosis. Pediatr Diabetes. 2003;4(1):29–31.

    PubMed  Google Scholar 

  92. Singhal PC, Abramovici M, Venkatesan J. Rhabdomyolysis in the hyperosmolal state. Am J Med. 1990;88(1):9–12.

    PubMed  CAS  Google Scholar 

  93. Agrawal S, et al. Nephrolithiasis: a complication of pediatric diabetic ketoacidosis. Pediatr Diabetes. 2018;19(2):329–32.

    PubMed  Google Scholar 

  94. Hursh BE, et al. Acute kidney injury in children with type 1 diabetes hospitalized for diabetic ketoacidosis. JAMA Pediatr. 2017;171(5):e170020.

    PubMed  Google Scholar 

  95. Ghetti S, et al. Diabetic ketoacidosis and memory dysfunction in children with type 1 diabetes. J Pediatr. 2010;156(1):109–14.

    PubMed  CAS  Google Scholar 

  96. Cameron FJ, et al. Neurological consequences of diabetic ketoacidosis at initial presentation of type 1 diabetes in a prospective cohort study of children. Diabetes Care. 2014;37(6):1554–622.

    PubMed  PubMed Central  Google Scholar 

  97. Jessup AB, et al. Effects of diabetic ketoacidosis on visual and verbal neurocognitive function in young patients presenting with new-onset type 1 diabetes. J Clin Res Pediatr Endocrinol. 2015;7(3):203–10.

    PubMed  PubMed Central  Google Scholar 

  98. Aye T, et al. Impact of early diabetic ketoacidosis on the developing brain. Diabetes Care. 2019;42(3):443–9.

    PubMed  Google Scholar 

  99. Diallo AM, et al. Early predictors of diabetic retinopathy in type 1 diabetes: the Retinopathy Champagne Ardenne Diabete (ReCAD) study. J Diabetes Complications. 2018;32(8):753–8.

    PubMed  Google Scholar 

  100. Gosmanov AR, Gosmanova EO, Dillard-Cannon E. Management of adult diabetic ketoacidosis. Diabetes Metab Syndr Obes. 2014;7:255–64.

    PubMed  PubMed Central  Google Scholar 

  101. Tran TTT, et al. Review of evidence for adult diabetic ketoacidosis management protocols. Front Endocrinol (Lausanne). 2017;8:106.

    Google Scholar 

  102. Umpierrez GE, et al. Treatment of diabetic ketoacidosis with subcutaneous insulin as part. Diabetes Care. 2004;27(8):1873–8.

    PubMed  CAS  Google Scholar 

  103. Funk GC, et al. Compensatory hypochloraemic alkalosis in diabetic ketoacidosis. Diabetologia. 2003;46(6):871–3.

    PubMed  Google Scholar 

  104. Yung M, Letton G, Keeley S. Controlled trial of Hartmann's solution versus 0.9% saline for diabetic ketoacidosis. J Paediatr Child Health. 2017;53(1):12–7.

    PubMed  Google Scholar 

  105. Williams V, et al. 0.9% saline versus Plasma-Lyte as initial fluid in children with diabetic ketoacidosis (SPinK trial): a double-blind randomized controlled trial. Crit Care. 2020;24(1):1.

    PubMed  PubMed Central  Google Scholar 

  106. Van Zyl DG, Rheeder P, Delport E. Fluid management in diabetic-acidosis–Ringer's lactate versus normal saline: a randomized controlled trial. QJM. 2012;105(4):337–43.

    PubMed  Google Scholar 

  107. Bergmann KR, et al. Resuscitation with Ringer’s lactate compared with normal saline for pediatric diabetic ketoacidosis. Pediatr Emerg Care. 2018. https://doi.org/10.1097/PEC.0000000000001550.

  108. Rosenbloom AL. The management of diabetic ketoacidosis in children. Diabetes Ther. 2010;1(2):103–20.

    PubMed  CAS  Google Scholar 

  109. Nallasamy K, et al. Low-dose vs standard-dose insulin in pediatric diabetic ketoacidosis: a randomized clinical trial. JAMA Pediatr. 2014;168(11):999–1005.

    PubMed  Google Scholar 

  110. Razavi Z, Maher S, Fredmal J. Comparison of subcutaneous insulin as part and intravenous regular insulin for the treatment of mild and moderate diabetic ketoacidosis in pediatric patients. Endocrine. 2018;61(2):267–74.

    PubMed  CAS  Google Scholar 

  111. Wallace TM, Matthews DR. Recent advances in the monitoring and management of diabetic ketoacidosis. QJM. 2004;97(12):773–80.

    PubMed  CAS  Google Scholar 

  112. Adrogue HJ, Madias NE. Management of life-threatening acid-base disorders. First of two parts. N Engl J Med. 1998;338(1):26–34.

    PubMed  CAS  Google Scholar 

  113. Chua HR, Schneider A, Bellomo R. Bicarbonate in diabetic ketoacidosis—a systematic review. Ann Intensive Care. 2011;1(1):23.

    PubMed  PubMed Central  Google Scholar 

  114. Miszczuk K, et al. Ventricular bigeminy and trigeminy caused by hypophosphataemia during diabetic ketoacidosis treatment: a case report. Ital J Pediatr. 2019;45(1):42.

    PubMed  PubMed Central  Google Scholar 

  115. Carlotti AP, Bohn D, Halperin ML. Importance of timing of risk factors for cerebral oedema during therapy for diabetic ketoacidosis. Arch Dis Child. 2003;88(2):170–3.

    PubMed  PubMed Central  CAS  Google Scholar 

  116. Decourcey DD, et al. Increasing use of hypertonic saline over mannitol in the treatment of symptomatic cerebral edema in pediatric diabetic ketoacidosis: an 11-year retrospective analysis of mortality*. Pediatr Crit Care Med. 2013;14(7):694–700.

    PubMed  Google Scholar 

  117. Malone JI, Brodsky SJ. The value of electrocardiogram monitoring in diabetic ketoacidosis. Diabetes Care. 1980;3(4):543–7.

    PubMed  CAS  Google Scholar 

  118. Harrison VS, et al. Glargine co-administration with intravenous insulin in pediatric diabetic ketoacidosis is safe and facilitates transition to a subcutaneous regimen. Pediatr Diabetes. 2017;18(8):742–8.

    PubMed  CAS  Google Scholar 

  119. Davies MJ, et al. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018;41(12):2669–701.

    PubMed  PubMed Central  Google Scholar 

  120. Buse JB, et al. Sotagliflozin in combination with optimized insulin therapy in adults with type 1 diabetes: the North American in Tandem1 Study. Diabetes Care. 2018;41(9):1970–80.

    PubMed  PubMed Central  CAS  Google Scholar 

  121. Peters AL, et al. Euglycemic diabetic ketoacidosis: a potential complication of treatment with sodium-glucose cotransporter 2 inhibition. Diabetes Care. 2015;38(9):1687–93.

    PubMed  PubMed Central  CAS  Google Scholar 

  122. Erondu N, et al. Diabetic ketoacidosis and related events in the canagliflozin type 2 diabetes clinical program. Diabetes Care. 2015;38(9):1680–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  123. Rosenstock J, et al. Empagliflozin as adjunctive to insulin therapy in type 1 diabetes: the EASE Trials. Diabetes Care. 2018;41(12):2560–9.

    PubMed  CAS  Google Scholar 

  124. Danne T, Biester T, Kordonouri O. Combined SGLT1 and SGLT2 inhibitors and their role in diabetes care. Diabetes Technol Ther. 2018;20(S2):S269–S277277.

    PubMed  Google Scholar 

  125. Wolfsdorf JI, Ratner RE. SGLT inhibitors for type 1 diabetes: proceed with extreme caution. Diabetes Care. 2019;42(6):991–3.

    PubMed  CAS  Google Scholar 

  126. Garber AJ. Long-acting glucagon-like peptide 1 receptor agonists: a review of their efficacy and tolerability. Diabetes Care. 2011;34(Suppl 2):S279–S284284.

    PubMed  PubMed Central  CAS  Google Scholar 

  127. Dicker D. DPP-4 inhibitors: impact on glycemic control and cardiovascular risk factors. Diabetes Care. 2011;34(Suppl 2):S276–S278278.

    PubMed  PubMed Central  CAS  Google Scholar 

  128. Tamborlane WV, et al. Liraglutide in children and adolescents with type 2 diabetes. N Engl J Med. 2019;381(7):637–46.

    PubMed  CAS  Google Scholar 

  129. Janzen KM, Steuber TD, Nisly SA. GLP-1 Agonists in type 1 diabetes mellitus. Ann Pharmacother. 2016;50(8):656–65.

    PubMed  Google Scholar 

  130. Wright LA, Hirsch IB. Non-insulin treatments for Type 1 diabetes: critical appraisal of the available evidence and insight into future directions. Diabet Med. 2019;36(6):665–78.

    PubMed  CAS  Google Scholar 

  131. Ahmad MH, Shafiq I. Diabetic ketoacidosis following PEG-asparaginase therapy. Endocrinol Diabetes Metab Case Rep. 2018;2018:18–0064.

    PubMed  PubMed Central  Google Scholar 

  132. Byun DJ, et al. Cancer immunotherapy—immune checkpoint blockade and associated endocrinopathies. Nat Rev Endocrinol. 2017;13(4):195–207.

    PubMed  PubMed Central  CAS  Google Scholar 

  133. Kotwal A, et al. Immune checkpoint inhibitors: an emerging cause of insulin-dependent diabetes. BMJ Open Diabetes Res Care. 2019;7(1):e000591.

    PubMed  PubMed Central  Google Scholar 

  134. Kabir TF, et al. Immune checkpoint inhibitors in pediatric solid tumors: status in 2018. Ochsner J. 2018;18(4):370–6.

    PubMed  PubMed Central  Google Scholar 

  135. Merchant MS, et al. Phase I clinical trial of ipilimumab in pediatric patients with advanced solid tumors. Clin Cancer Res. 2016;22(6):1364–70.

    PubMed  CAS  Google Scholar 

  136. Picard S, et al. Optimization of insulin regimen and glucose outcomes with short-term real-time continuous glucose monitoring (RT-CGM) in type 1 diabetic children with sub-optimal glucose control on multiple daily injections: the pediatric DIACCOR study. Arch Pediatr. 2019;26(2):95–101.

    PubMed  CAS  Google Scholar 

  137. Thalange N, et al. The rate of hyperglycemia and ketosis with insulin degludec-based treatment compared with insulin detemir in pediatric patients with type 1 diabetes: an analysis of data from two randomized trials. Pediatr Diabetes. 2019;20(3):314–20.

    PubMed  PubMed Central  CAS  Google Scholar 

  138. Karamat MA, et al. Clinical and cost implications of insulin degludec in patients with type 1 diabetes and problematic hypoglycemia: a quality improvement project. Diabetes Ther. 2018;9(2):839–49.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne L. Levitsky.

Ethics declarations

Funding

No outside funding was used in the preparation of this review article.

Conflict of interest

Dr. Levitsky is a consultant to Eli Lilly on a study of a diabetes drug and has been a consultant to Novo Nordisk on a diabetes drug trial. The remaining authors have no potential conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castellanos, L., Tuffaha, M., Koren, D. et al. Management of Diabetic Ketoacidosis in Children and Adolescents with Type 1 Diabetes Mellitus. Pediatr Drugs 22, 357–367 (2020). https://doi.org/10.1007/s40272-020-00397-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-020-00397-0

Navigation