Skip to main content
Log in

Anisotropic plasticity deformation during micro-deep drawing of 304 foils: An experimental and numerical investigation

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

The purpose of this work is to study the effect of anisotropic plasticity on the micro-deep drawing of the 304 stainless steel foils through a combination of experimental testing and numerical modeling. A phenomenological anisotropic model, with the Yld2004-18p yield function, is used to model the anisotropic plasticity deformation of the material. Based on the miniature tensile experimental data and Voce's hardening law, the coefficients in the Yld2004-18p function were calibrated. The FE modelling was implemented using ABAQUS to simulate the micro-deep drawing experiments. The wall thickness and height of the cylindrical cup obtained by the simulation have shown to be reasonably close to the experimental values, and the distribution of ears is the same as the experimental results. It has shown that the Yld2004-18p anisotropic yield function can accurately describe the anisotropic behavior of 304 stainless steel foils during the micro-deep drawing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Persano A, Quaranta F, Taurino A, Siciliano PA, Iannacci J (2020) Thin film encapsulation for RF MEMS in 5G and modern telecommunication systems. Sensors 20(7):2133. https://doi.org/10.3390/s20072133

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  2. Tao K, Tang L, Wu J, Lye SW, Chang H, Miao J (2018) Investigation of multimodal electret-based MEMS energy harvester with impact-induced nonlinearity. J Microelectromech Syst 27:276–88. https://doi.org/10.1109/JMEMS.2018.2792686

    Article  CAS  Google Scholar 

  3. Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraji-Dana MS, Faraon A (2018) MEMS-tunable dielectric metasurface lens. Nat Commun 9(1):812. https://doi.org/10.1038/s41467-018-03155-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mallik S, Chowdhury D, Chttopadhyay M (2019) Development and performance analysis of a low-cost MEMS microphone-based hearing aid with three different audio amplifiers. Innov Syst Softw Eng 15:17–25. https://doi.org/10.1007/s11334-019-00325-7

    Article  Google Scholar 

  5. Xu Q, Li X, Chan CY (2018) Enhancing localization accuracy of MEMS-INS/GPS/in-vehicle sensors integration during GPS outages. Ieee T Instrum Meas 67(8):1966–1978. https://doi.org/10.1109/TIM.2018.2805231

    Article  ADS  Google Scholar 

  6. Shimizu T, Ogawa M, Yang M, Manabe K (2014) Plastic anisotropy of ultra-thin rolled phosphor bronze foils and its thickness strain evolution in micro-deep drawing. Mater Des 56:604–612. https://doi.org/10.1016/j.matdes.2013.11.048

    Article  CAS  Google Scholar 

  7. Tang W, Huang S, Li D, Peng Y (2015) Mechanical anisotropy and deep drawing behaviours of AZ31 magnesium alloy sheets produced by unidirectional and cross rolling. J Mater Process Technol 215:320–326. https://doi.org/10.1016/j.jmatprotec.2014.08.020

    Article  CAS  Google Scholar 

  8. Demin VA, Larin SN, Riskin RV, Rizkova AA (2018) Study the influence of anisotropy on the drawing cylindrical part. CIS Iron Steel Rev 16:25-28. https://doi.org/10.17580/cisisr.2018.02.05

  9. Yoon JH, Cazacu O, Yoon JW, Dick RE (2010) Earing predictions for strongly textured aluminum sheets. Int J Mech Sci 52(12):1563–1578. https://doi.org/10.1016/j.ijmecsci.2010.07.005

    Article  Google Scholar 

  10. Plunkett B, Cazacu O, Barlat F (2008) Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals. Int J Plasticity 24(5):847–866. https://doi.org/10.1016/j.ijplas.2007.07.013

    Article  CAS  Google Scholar 

  11. Banabic D, Barlat F, Cazacu O, Kuwabara T (2020) Advances in anisotropy of plastic behaviour and formability of sheet metals. Int. J. Mater 13:749–787. https://doi.org/10.1007/s12289-020-01580-x

    Article  Google Scholar 

  12. Habraken AM, Aksen TA, Alves JL (2022) Analysis of ESAFORM 2021 cup drawing benchmark of an Al alloy, critical factors for accuracy and efficiency of FE simulations. Int. J. Mater 15(5):61. https://doi.org/10.1007/s12289-022-01672-w

    Article  Google Scholar 

  13. Lou Y, Zhang S, Yoon JW (2019) A reduced Yld 2004 function for modeling of anisotropic plastic deformation of metals under triaxial loading. Int J Mech Sci 161:105027. https://doi.org/10.1016/j.ijmecsci.2019.105027

    Article  Google Scholar 

  14. Rong H, Ying L, Hu P, Hou W (2021) Characterization on the thermal anisotropic behaviors of high strength AA7075 alloy with the Yld 2004–18p yield function. J Alloy Compd 877:159955. https://doi.org/10.1016/j.jallcom.2021.159955

    Article  CAS  Google Scholar 

  15. Neto DM, Oliveira MC, Alves JL, Menezes LF (2014) Influence of the plastic anisotropy modelling in the reverse deep drawing process simulation. Mater Des 60:368–379. https://doi.org/10.1016/j.matdes.2014.04.008

    Article  Google Scholar 

  16. Chai L, Luan B, Xiao D, Zhang M, Murty KL, Liu Q (2015) Microstructural and textural evolution of commercially pure Zr sheet rolled at room and liquid nitrogen temperatures. Mater Des 85:296–308. https://doi.org/10.1016/j.matdes.2015.06.088

    Article  CAS  Google Scholar 

  17. He W, Li F, Zhang H, Chen H, Guo H (2019) The influence of cold rolling deformation on tensile properties and microstructures of Mn18Cr18 N austenitic stainless steel. Mat Sci Eng 764:138245. https://doi.org/10.1016/j.msea.2019.138245

    Article  CAS  Google Scholar 

  18. Liu H, Wang Y, Li B, Ma X, Wu R, Hou L, Zhang J, Zhang M (2019) Effect of cryogenic rolling process on microstructure and mechanical properties of Mg-14Li-1Al alloy. Mater Charact 157:109903. https://doi.org/10.1016/j.matchar.2019.109903

    Article  CAS  Google Scholar 

  19. Basak S, Panda SK, Lee MG (2020) Formability and fracture in deep drawing sheet metals: Extended studies for pre-strained anisotropic thin sheets. Int J Mech Sci 170:105346. https://doi.org/10.1016/j.ijmecsci.2019.105346

    Article  Google Scholar 

  20. Hu P, Liu YQ, Wang JC (2001) Numerical study of the flange earring of deep-drawing sheets with stronger anisotropy. Int J Mech Sci 43(1):279–296. https://doi.org/10.1016/S0020-7403(99)00119-8

    Article  Google Scholar 

  21. Othmen KB, Sai K, Manach PY, Elleuch K (2019) Reverse deep drawing process: material anisotropy and work-hardening effects. P I Mech Eng L-J Mat 233(4):699–713. https://doi.org/10.1177/146442071770195

    Article  Google Scholar 

  22. Tiwari P R, Rathore A, Bodkhe M G(2022) Factors affecting the deep drawing process–A review. Mater Today: Proc 56:2902-2908. https://doi.org/10.1016/j.matpr.2021.10.189

  23. Bruschi S, Altan T, Banabic D, Bariani PF, Brosius A, Cao J, Ghiotti A, Khraisheh M, Merklein M, Tekkaya AE (2014) Testing and modelling of material behaviour and formability in sheet metal forming. Cirp Ann-Manuf Techn 63(2):727–749. https://doi.org/10.1016/j.cirp.2014.05.005

    Article  Google Scholar 

  24. Nachbagauer K (2014) State of the art of ANCF elements regarding geometric description, interpolation strategies, definition of elastic forces, validation and the locking phenomenon in comparison with proposed beam finite elements. Arch Comput Method Eng 21(3):293–319. https://doi.org/10.1007/s11831-014-9117-9

    Article  MathSciNet  Google Scholar 

  25. Yadav A D (2008) Process analysis and design in stamping and sheet hydroforming. PhD dissertation The Ohio State University:175

  26. Tuninetti V, Oñate A, Valenzuela M (2023) Characterization approaches affect asymmetric load predictions of hexagonal close-packed alloy. J. Mater. Res. Technol. 26:5028–5036. https://doi.org/10.1016/j.jmrt.2023.08.255

    Article  CAS  Google Scholar 

  27. Sun W, Yue Z, Wen Z, Li M (2023) An overview on material parameter inverse and its application to miniaturized testing at elevated temperature. J. Mater. Res. Technol. 22:3132–3145. https://doi.org/10.1016/j.jmrt.2022.12.159

    Article  Google Scholar 

  28. Bouchaâla K, Ghanameh MF, Faqir M, Mada M, Essadiqi E (2021) Numerical investigation of the effect of punch corner radius and die shoulder radius on the flange earrings for AA1050 and AA1100 aluminum alloys in cylindrical deep drawing process. Heliyon 7(4). https://doi.org/10.1016/j.heliyon.2021.e06662

  29. Cai G, Yang J, Yuan Y, Yang X, Lang L, Alexandrov S (2020) Mechanics analysis of aluminum alloy cylindrical cup during warm sheet hydromechanical deep drawing. Int. J. Mech. Sci 174:105556. https://doi.org/10.1016/j.ijmecsci.2020.105556

    Article  Google Scholar 

  30. Zheng G, Li X, Chang Y, Wang C, Dong H (2018) A comparative study on formability of the third-generation automotive medium-Mn steel and 22MnB5 steel. J Mater Eng Perform 27:530–540. https://doi.org/10.1007/s11665-018-3183-3

    Article  CAS  Google Scholar 

  31. Narayanasamy R, Narayanan CS (2008) Forming, fracture and wrinkling limit diagram for if steel sheets of different thickness. Mater Des 29(7):1467–1475. https://doi.org/10.1016/j.matdes.2006.09.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministry of Science and Technology of the P.R. China (G2021003007L). This work is also supported by the Modern Equipment Manufacturing Collaborative Innovation Center of Southern Hebei New District.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hezong Li or Yong Pang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, L., Huang, S., Hu, J. et al. Anisotropic plasticity deformation during micro-deep drawing of 304 foils: An experimental and numerical investigation. Int J Mater Form 17, 21 (2024). https://doi.org/10.1007/s12289-024-01822-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12289-024-01822-2

Keywords

Navigation