Skip to main content
Log in

Warm deep drawing behavior of Inconel 625 alloy using constitutive modelling and anisotropic yield criteria

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

The present work provides a systematic approach to investigate anisotropic yield criteria and constitutive modeling and its applicability in finite element analysis of warm deep drawing behavior of Inconel 625 alloy. Firstly, the material properties and flow stress behavior of Inconel 625 alloy have been determined at temperatures (room temperature (RT) to 400 °C at an interval of 100 °C) at (0.0001–0.1 s−1) strain rates using uniaxial tensile tests. The flow stress behavior is influenced significantly by strain rate and temperature variation. Various mechanical properties and anisotropic parameters have been studied at different strain rates and temperatures. On the basis of flow stress data, Sellers constitutive model with different anisotropic yield criteria namely; Hill’48 and Barlat’89 has been developed. Subsequently, experiments of deep drawing have been conducted at various processing conditions. The process parameters effect on Limiting Draw Ratio (LDR), thickness distribution, Maximum Thinning Rate (MTR) and Thickness Deviation (TD) has been investigated. Furthermore, Sellers constitutive model coupled with anisotropic yield criteria has been implemented in ABAQUS software using UMAT subroutine. Sellers model coupled with Barlat’89 yield criterion displayed an accurate prediction of warm deep drawing behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Lin YC, Yang H, Xin Y, Li C-Z (2018) Effects of initial microstructures on serrated flow features and fracture mechanisms of a nickel-based superalloy. Mater Charact 144:9–21. https://doi.org/10.1016/j.matchar.2018.06.029

    Article  Google Scholar 

  2. Mahalle G, Salunke O, Kotkunde N et al (2019) Neural network modeling for anisotropic mechanical properties and work hardening behavior of Inconel 718 alloy at elevated temperatures. Journal of Materials Research and Technology 8(2):2130–2140. https://doi.org/10.1016/j.jmrt.2019.01.019

    Article  Google Scholar 

  3. Shoemaker LE (2005) Alloys 625 and 725: trends in properties and applications. In: Superalloys 718, 625, 706 and various derivatives (2005). TMS, pp 409–418

  4. Jeswiet J, Geiger M, Engel U et al (2008) Metal forming progress since 2000. CIRP J Manuf Sci Technol 1(1):2–17. https://doi.org/10.1016/j.cirpj.2008.06.005

    Article  Google Scholar 

  5. Badrish CA, Kotkunde N, Salunke O, et al (2019) Experimental and numerical investigations of Johnson cook constitutive model for hot flow stress prediction of Inconel 625 alloy. In: Proceedings of the 11th international conference on computer modeling and simulation. ACM, New York, pp 36–40e

  6. Cui J, Sun G, Xu J et al (2015) A method to evaluate the formability of high-strength steel in hot stamping. Mater Des 77:95–109. https://doi.org/10.1016/j.matdes.2015.04.009

    Article  Google Scholar 

  7. Kardan M, Parvizi A, Askari A (2018) Experimental and finite element results for optimization of punch force and thickness distribution in deep drawing process. Arab J Sci Eng 43(3):1165–1175. https://doi.org/10.1007/s13369-017-2783-9

    Article  Google Scholar 

  8. Morchhale A (2017) Study of positioning and dimensional optimization of angled stiffeners using finite element analysis of above ground storage tank. International Journal of Research in Mechanical Engineering 10–19

  9. Wallmeier M, Linvill E, Hauptmann M et al (2015) Explicit FEM analysis of the deep drawing of paperboard. Mech Mater 89:202–215. https://doi.org/10.1016/j.mechmat.2015.06.014

    Article  Google Scholar 

  10. Morchhale A (2016) Design and finite element analysis of hydrostatic pressure testing machine used for ductile Iron pipes. MER 6(2):23. https://doi.org/10.5539/mer.v6n2p23

    Article  Google Scholar 

  11. Kotkunde N, Deole AD, Gupta AK, Singh SK (2014) Comparative study of constitutive modeling for Ti–6Al–4V alloy at low strain rates and elevated temperatures. Mater Des 55:999–1005. https://doi.org/10.1016/j.matdes.2013.10.089

    Article  Google Scholar 

  12. Abedrabbo N, Pourboghrat F, Carsley J (2007) Forming of AA5182-O and AA5754-O at elevated temperatures using coupled thermo-mechanical finite element models. Int J Plast 23(5):841–875. https://doi.org/10.1016/j.ijplas.2006.10.005

    Article  MATH  Google Scholar 

  13. Naka T, Uemori T, Hino R et al (2008) Effects of strain rate, temperature and sheet thickness on yield locus of AZ31 magnesium alloy sheet. J Mater Process Technol 201(1-3):395–400. https://doi.org/10.1016/j.jmatprotec.2007.11.189

    Article  Google Scholar 

  14. Lin YC, Chen X-M (2011) A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater Des 32(4):1733–1759. https://doi.org/10.1016/j.matdes.2010.11.048

    Article  Google Scholar 

  15. Lin YC, Li K-K, Li H-B et al (2015) New constitutive model for high-temperature deformation behavior of inconel 718 superalloy. Mater Des 74:108–118. https://doi.org/10.1016/j.matdes.2015.03.001

    Article  Google Scholar 

  16. Mahalle G, Kotkunde N, Gupta AK et al (2019) Microstructure characteristics and comparative analysis of constitutive models for flow stress prediction of Inconel 718 alloy. J of Materi Eng and Perform 28(6). https://doi.org/10.1007/s11665-019-04116-w

  17. Gujrati R, Gupta C, Jha JS et al (2019) Understanding activation energy of dynamic recrystallization in Inconel 718. Mater Sci Eng A 744:638–651. https://doi.org/10.1016/j.msea.2018.12.008

    Article  Google Scholar 

  18. Banabic D (2010) Sheet metal forming processes: constitutive modelling and numerical simulation. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  19. Kotkunde N, Deole AD, Gupta AK, Singh SK (2014) Experimental and numerical investigation of anisotropic yield criteria for warm deep drawing of Ti–6Al–4V alloy. Mater Des 63:336–344. https://doi.org/10.1016/j.matdes.2014.06.017

    Article  Google Scholar 

  20. Barlat F, Brem JC, Yoon JW et al (2003) Plane stress yield function for aluminum alloy sheets—part 1: theory. Int J Plast 19(9):1297–1319. https://doi.org/10.1016/S0749-6419(02)00019-0

    Article  MATH  Google Scholar 

  21. Chun BK, Jinn JT, Lee JK (2002) Modeling the Bauschinger effect for sheet metals, part I: theory. Int J Plast 18(5-6):571–595. https://doi.org/10.1016/S0749-6419(01)00046-8

    Article  MATH  Google Scholar 

  22. Lin YC, Wen D-X, Chen M-S et al (2016) Improved dislocation density-based models for describing hot deformation behaviors of a Ni-based superalloy. J Mater Res 31(16):2415–2429. https://doi.org/10.1557/jmr.2016.220

    Article  Google Scholar 

  23. Naranje V, Kumar S, Kashid S et al (2016) Prediction of life of deep drawing die using artificial neural network. Advances in Materials and Processing Technologies 2(1):132–142. https://doi.org/10.1080/2374068X.2016.1160601

    Article  Google Scholar 

  24. Basak S, Panda SK (2017) Implementation of YLD-96 plasticity theory in formability analysis of bi-axial pre-strained steel sheets. Procedia Engineering 173:1085–1092. https://doi.org/10.1016/j.proeng.2016.12.189

    Article  Google Scholar 

  25. Prasad KS, Panda SK, Kar SK et al (2018) Effect of solution treatment on deep drawability of IN718 sheets: experimental analysis and metallurgical characterization. Mater Sci Eng A 727:97–112. https://doi.org/10.1016/j.msea.2018.04.110

    Article  Google Scholar 

  26. Abedrabbo N, Pourboghrat F, Carsley J (2006) Forming of aluminum alloys at elevated temperatures – part 2: numerical modeling and experimental verification. Int J Plast 22(2):342–373. https://doi.org/10.1016/j.ijplas.2005.03.006

    Article  MATH  Google Scholar 

  27. Prasad KS, Panda SK, Kar SK et al (2018) Prediction of fracture and deep drawing behavior of solution treated Inconel-718 sheets: numerical modeling and experimental validation. Mater Sci Eng A 733:393–407. https://doi.org/10.1016/j.msea.2018.07.007

    Article  Google Scholar 

  28. Kotkunde N, Deole AD, Gupta AK et al (2014) Failure and formability studies in warm deep drawing of Ti–6Al–4V alloy. Mater Des 60:540–547. https://doi.org/10.1016/j.matdes.2014.04.040

    Article  Google Scholar 

  29. Verleysen P, Peirs J, Van Slycken J et al (2011) Effect of strain rate on the forming behaviour of sheet metals. J Mater Process Technol 211(8):1457–1464. https://doi.org/10.1016/j.jmatprotec.2011.03.018

    Article  Google Scholar 

  30. Lazarescu L, Nicodim I, Banabic D (2015) Evaluation of Drawing Force and Thickness Distribution in the Deep-Drawing Process with Variable Blank-Holding. In: Key Engineering Materials. https://www.scientific.net/KEM.639.33. Accessed 9 Jun 2019

  31. Hill R (1990) Constitutive modelling of orthotropic plasticity in sheet metals. Journal of the Mechanics and Physics of Solids 38(3):405–417. https://doi.org/10.1016/0022-5096(90)90006-P

    Article  MathSciNet  MATH  Google Scholar 

  32. Barlat F, Lian K (1989) Plastic behavior and stretchability of sheet metals. Part I: a yield function for orthotropic sheets under plane stress conditions. Int J Plast 5(1):51–56. https://doi.org/10.1016/0749-6419(89)90019-3

    Article  Google Scholar 

Download references

Acknowledgements

The author is thankful for the financial aid given by Science and Engineering Research Board (SERB-DST ECR) Government of India (Sanction Number: ECR/2016/001402) and Central Analytical Lab (CAL) of BITS-Pilani, Hyderabad Campus for providing the UTM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Kotkunde.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotkunde, N., Badrish, A., Morchhale, A. et al. Warm deep drawing behavior of Inconel 625 alloy using constitutive modelling and anisotropic yield criteria. Int J Mater Form 13, 355–369 (2020). https://doi.org/10.1007/s12289-019-01505-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-019-01505-3

Keywords

Navigation