Skip to main content
Log in

Towards an accurate pressure estimation in injection molding simulation using surrogate modeling

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

The computational cost of high-fidelity injection molding simulations has been growing in the past years making it more and more challenging to use them for performing analyses such as optimizations or uncertainty quantification. Surrogate modeling offers a cheaper way to realize such studies and has been gaining attention in the field of injection molding simulation. In this work, we propose to compare three surrogate modeling techniques along with two design of experiment methods in their ability to predict the pressure signal at a surface node in a Moldflow simulation by varying process and modeling parameters. A Sobol sensitivity analysis is performed to study the contribution of the varied parameters on the pressure results. In addition, one of the generated models is used along with experimental pressure sensor data to improve the pressure estimation by calibrating the heat transfer coefficients during filling and packing as well as the pressure-dependency coefficient in the Cross-WLF viscosity model. This resulted in major improvements of the pressure predictions for all 27 considered cases in comparison to using the default heat transfer coefficients and viscosity model parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Kennedy P, Zheng R (2013) Flow analysis of injection molds, 2nd edn. Hanser Publishers, Munich; Cincinnati

    Book  Google Scholar 

  2. Gao Y, Wang X (2009) Surrogate-based process optimization for reducing warpage in injection molding. J Mater Process Technol 209(3):1302–1309. https://doi.org/https://linkinghub.elsevier.com/retrieve/pii/S0924013608002586. https://doi.org/10.1016/j.jmatprotec.2008.03.048

    Article  MathSciNet  Google Scholar 

  3. Chen W, Zhou X-h, Wang H-f, Wang W (2010) Multi-objective optimal approach for injection molding based on surrogate model and particle swarm optimization algorithm. J Shanghai Jiaotong Univ (Sci) 15(1):88–93. https://doi.org/10.1007/s12204-010-9517-4

    Article  Google Scholar 

  4. Wang X, Gu J, Shen C, Wang X (2015) Warpage optimization with dynamic injection molding technology and sequential optimization method. Int J Adv Manuf Technol 78(1-4):177–187. https://doi.org/10.1007/s00170-014-6621-x

    Article  Google Scholar 

  5. Kang G-J, Park C-H, Choi D-H (2016) Metamodel-based design optimization of injection molding process variables and gates of an automotive glove box for enhancing its quality. J Mech Sci Technol 30(4):1723–1732. https://doi.org/10.1007/s12206-016-0328-x

    Article  Google Scholar 

  6. Li C, Wang F-L, Chang Y-Q, Liu Y (2010) A modified global optimization method based on surrogate model and its application in packing profile optimization of injection molding process. Int J Adv Manuf Technol 48(5-8):505–511. https://doi.org/10.1007/s00170-009-2302-6

    Article  Google Scholar 

  7. Kitayama S, Miyakawa H, Takano M, Aiba S (2017) Multi-objective optimization of injection molding process parameters for short cycle time and warpage reduction using conformal cooling channel. Int J Adv Manuf Technol 88(5-8):1735–1744. https://doi.org/10.1007/s00170-016-8904-x

    Article  Google Scholar 

  8. Feng Q, Zhou X (2019) Automated and robust multi-objective optimal design of thin-walled product injection process based on hybrid RBF-MOGA. Int J Adv Manuf Technol 101(9-12):2217–2231. https://doi.org/10.1007/s00170-018-3084-5

    Article  Google Scholar 

  9. Shi H, Xie S, Wang X (2013) A warpage optimization method for injection molding using artificial neural network with parametric sampling evaluation strategy. Int J Adv Manuf Technol 65(1-4):343–353. https://doi.org/10.1007/s00170-012-4173-5

    Article  Google Scholar 

  10. Cheng J, Liu Z, Tan J (2013) Multiobjective optimization of injection molding parameters based on soft computing and variable complexity method. Int J Adv Manuf Technol 66(5-8):907–916. https://doi.org/10.1007/s00170-012-4376-9

    Article  Google Scholar 

  11. Xia W, Luo B, Liao X-p (2011) An enhanced optimization approach based on Gaussian process surrogate model for process control in injection molding. Int J Adv Manuf Technol 56(9-12):929–942. https://doi.org/10.1007/s00170-011-3227-4

    Article  Google Scholar 

  12. Villarreal-Marroquín MG et al (2013) A comparison of two metamodel-based methodologies for multiple criteria simulation optimization using an injection molding case study. J Polym Eng 33(3):193–209. https://www.degruyter.com/document/doi/10.1515/polyeng-2013-0022/html. https://doi.org/10.1515/polyeng-2013-0022

    Article  Google Scholar 

  13. Gao H, Zhang Y, Zhou X, Li D (2018) Intelligent methods for the process parameter determination of plastic injection molding. Front Mech Eng 13(1):85–95. https://doi.org/10.1007/s11465-018-0491-0

    Article  Google Scholar 

  14. Kurt M, Saban Kamber O, Kaynak Y, Atakok G, Girit O (2009) Experimental investigation of plastic injection molding: Assessment of the effects of cavity pressure and mold temperature on the quality of the final products. Mater Des 30(8):3217–3224. https://linkinghub.elsevier.com/retrieve/pii/S0261306909000089. https://doi.org/10.1016/j.matdes.2009.01.004

    Article  Google Scholar 

  15. Cross MM (1965) Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems. J Colloid Sci 20(5):417–437. https://linkinghub.elsevier.com/retrieve/pii/009585226590022X. https://doi.org/10.1016/0095-8522(65)90022-X

    Article  Google Scholar 

  16. Williams ML, Landel RF, Ferry JD (1955) Thetemperature dependence of relaxation mechanisms ina morphous polymers and other Glass-forming liquids. J Am Chem Soc 77 (14):3701–3707. https://doi.org/10.1021/ja01619a008

    Article  Google Scholar 

  17. Nguyen-Chung T, Jüttner G, Löser C, Pham T, Gehde M (2010) Determination of the heat transfer coefficient from short-shots studies and precise simulation of microinjection molding. Polymer Eng Sci 50(1):165–173. https://doi.org/10.1002/pen.21536

    Article  Google Scholar 

  18. Stricker M, Steinbichler G (2014) Determination of heat transfer coefficients at the polymer-mold-interface for injection molding simulation by means of calorimetry, 137–141. http://aip.scitation.org/doi/abs/10.1063/1.4873750

  19. Kleindel S, Eder R, Schretter H, Hochenauer C (2014) The elastic mold deformation during the filling and packing stage of the injection Molding Process. Smart Sci 2 (1):44–53. https://doi.org/10.1080/23080477.2014.11665603

    Article  Google Scholar 

  20. Wang GG, Shan S (2007) Review of metamodeling techniques in support of engineering design optimization. J Mech Des 129(4):370–380. https://asmedigitalcollection.asme.org/mechanicaldesign/article/129/4/370/466824/Review-of-Metamodeling-Techniques-in-Support-of. https://doi.org/10.1115/1.2429697

    Article  Google Scholar 

  21. Forrester AI, Keane AJ (2009) Recent advances in surrogate-based optimization. Prog Aerosp Sci 45(1-3):50–79. https://linkinghub.elsevier.com/retrieve/pii/S0376042108000766. https://doi.org/10.1016/j.paerosci.2008.11.001

    Article  Google Scholar 

  22. Iuliano E, Quagliarella D (2013) Proper Orthogonal Decomposition, surrogate modelling and evolutionary optimization in aerodynamic design. Comput Fluids 84:327–350. https://linkinghub.elsevier.com/retrieve/pii/S0045793013002223. https://doi.org/10.1016/j.compfluid.2013.06.007

    Article  MathSciNet  MATH  Google Scholar 

  23. Razavi S, Tolson BA, Burn DH (2012) Review of surrogate modeling in water resources: REVIEW. Water Resour Res 48(7). https://doi.org/10.1029/2011WR011527

  24. McClarren RG (2018) Uncertainty quantification and predictive computational science: A foundation for physical scientists and engineers, 1st ed. 2018. Springer International Publishing : Imprint, Springer, Cham

    Book  MATH  Google Scholar 

  25. Giunta A, Wojtkiewicz S, Eldred M. (2003) Overview design of experiments methods for computational simulations (American Institute of aeronautics and astronautics). https://doi.org/10.2514/6.2003-649

  26. Jank W (2005) Quasi-Monte Carlo sampling to improve the efficiency of Monte Carlo EM. Comput Stat Data Anal 48(4):685–701. https://linkinghub.elsevier.com/retrieve/pii/S0167947304001033. https://doi.org/10.1016/j.csda.2004.03.019

    Article  MathSciNet  MATH  Google Scholar 

  27. Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Assoc 44(247):335–341. https://doi.org/10.1080/01621459.1949.10483310

    Article  MATH  Google Scholar 

  28. Halton JH (1960) On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer Math 2(1):84–90. https://doi.org/10.1007/BF01386213

    Article  MathSciNet  MATH  Google Scholar 

  29. Niederreiter H (1992) Society for Industrial and Applied Mathematics.Random number generation and quasi-Monte Carlomethods: Author’s expanded lecture notes from his talks at the NSF-CBMS Regional Research Conference on Random Number Generation and Quasi-Monte Carlo Methods held at the University of Alaskaat Fairbanks, Aug. 13-17, 1990 (Society for Industrial and Applied Mathematics, Philadelphia, Pa.) OCLC: 775728856

  30. Sobol’ I (1967) On the distribution of points in a cube and the approximate evaluation of integrals. USSR Comput Math Math Phys 7 (4):86–112. https://linkinghub.elsevier.com/retrieve/pii/0041555367901449. https://doi.org/10.1016/0041-5553(67)90144-9

    Article  MathSciNet  MATH  Google Scholar 

  31. Faure H, Kritzer P, Pillichshammer F (2015) From van derCorputto modern constructions of sequences for quasi-Monte Carlo rules. Indag Math 26(5):760–822. https://linkinghub.elsevier.com/retrieve/pii/S0019357715000683. https://doi.org/10.1016/j.indag.2015.09.001

    Article  MathSciNet  MATH  Google Scholar 

  32. Nouy A (2010) A priori model reduction throughProper Generalized Decompositionfor solving time-dependent partial differential equations. Comput Methods Appl Mech Eng 199(23-24):1603–1626. https://linkinghub.elsevier.com/retrieve/pii/S0045782510000186. https://doi.org/10.1016/j.cma.2010.01.009

    Article  MATH  Google Scholar 

  33. Ryckelynck D, Chinesta F, Cueto E, Ammar A (2006) On the a priori model reduction: Overview and recent developments. Arch Comput Methods Eng 13(1):91–128. https://link.springer.com/article/10.1007/BF02905932

    Article  MathSciNet  MATH  Google Scholar 

  34. Du J et al (2013) POD reduced-order unstructured mesh modeling applied to 2d and 3d fluid flow. Comput Math Appl 65(3):362–379. https://linkinghub.elsevier.com/retrieve/pii/S0898122112004397. https://doi.org/10.1016/j.camwa.2012.06.009

    Article  MathSciNet  MATH  Google Scholar 

  35. Simpson T, Poplinski J, Koch PN, Allen J (2001) Meta models for computer-based engineering design: Surveyand recommendations. Eng Comput 17(2):129–150. https://doi.org/10.1007/PL00007198

    Article  Google Scholar 

  36. Teixeira R, Nogal M, O’Connor A (2021) Adaptive approaches in metamodel-based reliability analysis: A review. Struct Saf 89:102019. https://linkinghub.elsevier.com/retrieve/pii/S0167473020300989. https://doi.org/10.1016/j.strusafe.2020.102019

    Article  Google Scholar 

  37. Gratiet LL, Marelli S, Sudret B (2015) Metamodel-based sensitivity analysis: Polynomial chaos expansions and gaussian processes. In: Ghanem R, Higdon D, Owhadi H (eds) Handbook of uncertainty quantification. Springer International Publishing, Cham, pp 1–37. https://doi.org/10.1007/978-3-319-11259-6_38-1

  38. Crestaux T, Le Maıtre O, Martinez J-M (2009) Polynomial chaos expansion for sensitivity analysis. Reliab Eng Syst Saf 94(7):1161–1172. https://linkinghub.elsevier.com/retrieve/pii/S0951832008002561. https://doi.org/10.1016/j.ress.2008.10.008

    Article  Google Scholar 

  39. Nossent J, Elsen P, Bauwens W (2011) Sobol’ sensitivity analysis of a complex environmental model. Environ Modell Softw 26 (12):1515–1525. https://linkinghub.elsevier.com/retrieve/pii/S1364815211001939. https://doi.org/10.1016/j.envsoft.2011.08.010

    Article  Google Scholar 

  40. Sobol I (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55(1-3):271–280. https://linkinghub.elsevier.com/retrieve/pii/S0378475400002706. https://doi.org/10.1016/S0378-4754(00)00270-6

    Article  MathSciNet  MATH  Google Scholar 

  41. Rosolem R, Gupta HV, Shuttleworth WJ, Zeng X, de Gonçalves LGG (2012) A fully multiple-criteria implementation of the Sobol method for parameter sensitivity analysis: Multicriteria sobol sensitivity analysis. J Geophys Res: Atmos 117(D7). https://doi.org/10.1029/2011JD016355

  42. Spoerer Y, Boldt R, Androsch R, Kuehnert I (2021) Pressure- andtemperature-dependent crystallization kinetics of isotactic polypropylene under process relevant conditions. Curr Comput-Aided Drug Des 11 (9):1138. https://www.mdpi.com/2073-4352/11/9/1138. https://doi.org/10.3390/cryst11091138

    Google Scholar 

  43. Efron B (1981) Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods. Biometrika 68(3):589–599. https://doi.org/10.1093/biomet/68.3.589

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Michael Schick (Robert Bosch GmbH) for the helpful discussions concerning the Python Uncertainty Quantification library.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Saad.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Cross-WLF viscosity model

Appendix A: Cross-WLF viscosity model

The Cross-WLF viscosity model [15] describes the temperature, shear rate, and pressure dependency of the viscosity for thermoplastic materials. This model is used in Autodesk Moldflow Insight 2021.1 to calculate the viscosity of the polymer during its injection molding.

$$\eta = \frac{\eta_{0}}{1 + \left(\frac{\eta_{0}\dot{\gamma}}{\tau^{*}}\right)^{1-n}}$$
(A1)

where:

  • η is the viscosity of the melt,

  • η0 is the zero shear viscosity,

  • \(\dot {\gamma }\) is the shear rate,

  • τ is the critical stress at the transition to shear thinning,

  • n is the power law index in the high shear rate regime.

The zero shear viscosity parameter, η0, in the above equation is given by the WLF model [16]:

$$\eta_{0} = D_{1} \exp{\left[-\frac{A_{1}(T-T^{*})}{A_{2} + (T-T^{*})} \right]}$$
(A2)

where:

  • T is the temperature,

  • T = D2 + D3P is the glass transition temperature,

  • A2 = A3 + D3P,

  • P is the pressure,

  • A1, A2, D1, D2 and D3 are data-fitted coefficients.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, S., Sinha, A., Cruz, C. et al. Towards an accurate pressure estimation in injection molding simulation using surrogate modeling. Int J Mater Form 15, 72 (2022). https://doi.org/10.1007/s12289-022-01717-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12289-022-01717-0

Keywords

Navigation