Skip to main content
Log in

Numerical Investigation on the Effect of Pressure and Temperature on the Melt Filling During Injection Molding Process

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Molding development and fabrication is costly and always involves part modification. The cost-effective pre-molding analysis is advantageous to engineer and designer prior to the mold design and before mass production. Computer-aided techniques are identified as virtuously cost-effective for pre-molding analysis. The numerical simulation analysis of the injection molding process using ANSYS FLUENT 14 was carried out in the study. The setting pressure and operating temperature were considered for investigation. Influence of these two process parameters to the injection molding process in terms of filing time, flow front advancement, velocity profile were studied. The injection molding and rheological experiments were carried out to substantiate the predictions of ANSYS FLUENT 14 in solving injection molding problems. The results revealed the system pressure is dominant to filling time, flow front advancement and velocity profile. Inversely, operating temperature only vaguely affects the current injection molding process, due to the small variations of polypropylene viscosity at temperature 185–195\({^{\circ} {\rm C}}\). The discrepancies of the simulation and experimental results were only 4.35 and 2.21% for system pressure and temperature, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({B}\) :

Exponential-fitted constant (Pa s)

\({{c}_{{\rm p}}}\) :

Specific heat (J/kg K)

\({F}\) :

Front advancement parameter (–)

\({N}\) :

Power law index (–)

\({T}\) :

Temperature (K or \({^{\circ}{\rm C}}\))

\({T_{\rm b}}\) :

Temperature fitted constant (K)

\({T_{\rm in}}\) :

Temperature at inlet (K)

\({{T}_{\max}}\) :

Maximum temperature (\({^{\circ}{\rm C}}\))

\({T_{\rm wall}}\) :

Wall temperature (K)

\({T}\) :

Time (s)

\({U}\) :

Fluid velocity component in \({x}\)-direction (mm/s)

\({V}\) :

Fluid velocity component in \({y}\)-direction (mm/s)

\({V}\) :

Velocity (m/s)

\({{v}_{\max}}\) :

Maximum velocity (m/s)

\({W}\) :

Fluid velocity component in \({z}\)-direction (mm/s)

\({x,y,z}\) :

Cartesian coordinates (mm)

\({\eta}\) :

Viscosity (Pa s)

\({\eta_{0}}\) :

Zero shear rate viscosity (Pa s)

\({\rho}\) :

Density (\({\hbox{Kg/m}^{3}}\))

\({\tau}\) :

Shear stress (Pa)

\({\lambda}\) :

Time constant (s)

\({\dot{\gamma}}\) :

Shear rate (1/s)

\({\tau}\) * :

A parameter that describes the transition region between power law region and zero shear rates of the viscosity curve (Pa)

References

  1. Bikas A., Pantelelis N., Kanarachos A.: Computational tools for the optimal design of the injection moulding process. J. Mater. Process. Technol. 122, 112–126 (2002) doi:10.1016/S0924-0136(01)01248-1

    Article  Google Scholar 

  2. Pazos M., Baselga J., Bravo J.: Limiting thickness estimation in polycarbonate lenses injection using CAE tools. J. Mater. Process. Technol. 143–144, 438–441 (2003) doi:10.1016/S0924-0136(03)00425-4

    Article  Google Scholar 

  3. Abdullah M.K., Abdullah M.Z., Mujeebu M.A., Kamaruddin S., Ariff Z.M.: Study on the effect of stack thickness during encapsulation of stacked-chip scale packages (S-CSP). J. Microelectron. Electron. Packag. 5(2), 62–67 (2008)

    Article  Google Scholar 

  4. Yokoi H., Masuda N., Mitsuhata H.: Visualization analysis of flow front behavior during filling process of injection mold cavity by two-axis tracking system. J. Mater. Process. Technol. 130–131, 328–333 (2002) doi:10.1016/S0924-0136(02)00742-2

    Article  Google Scholar 

  5. Bariani P.F., Salvador M., Lucchetta G.: Development of a test method for the rheological characterization of polymers under the injection molding process conditions. J. Mater. Process. Technol. 191, 119–122 (2007) doi:10.1016/j.jmatprotec.2007.03.089

    Article  Google Scholar 

  6. Boronat T., Segui V.J., Peydro M.A., Reig M.J.: Influence of temperature and shear rate on the rheology and processability of reprocessed ABS in injection molding process. J. Mater. Process. Technol. 209, 2735–2745 (2009) doi:10.1016/j.jmatprotec.2008.06.013

    Article  Google Scholar 

  7. Xie P., Guo F., Jiao Z., Ding Y., Yang W.: Effect of gate size on the melt filling behavior and residual stress of injection molded parts. Mater. Des. 53, 366–372 (2014) doi:10.1016/j.matdes.2013.06.071

    Article  Google Scholar 

  8. Luoma J.A., Voller V.R.: An explicit scheme for tracking the filling front during polymer mold filling. Appl. Math. Model. 24, 575–590 (2000)

    Article  MATH  Google Scholar 

  9. Shin S., Lee W.I.: Finite element analysis of incompressible viscous flow with moving free surface by selective volume of fluid method. Int. J. Heat Fluid Flow. 21, 197–206 (2000) doi:10.1016/S0142-727X(99)00083-1

    Article  Google Scholar 

  10. Kumar A., Ghoshdastidar P.S., Muju M.K.: Computer simulation of transport processes during injection mold-® lling and optimization of the molding conditions. J. Mater. Process. Technol. 120, 438–449 (2002)

    Article  Google Scholar 

  11. Imihezri S.S.S., Sapuan S.M., Sulaiman S., Hamdan M.M., Zainuddin E.S., Osman M.R. et al.: Mould flow and component design analysis of polymeric based composite automotive clutch pedals. J. Mater. Process. Technol. 171, 358–365 (2006) doi:10.1016/j.jmatprotec.2005.06.077

    Article  Google Scholar 

  12. Smith A.G., Wrobel L.C., McCalla B.A., Allan P.S., Hornsby P.R.: A computational model for the cooling phase of injection moulding. J. Mater. Process. Technol. 195, 305–313 (2008) doi:10.1016/j.jmatprotec.2007.05.018

    Article  Google Scholar 

  13. Hassan H., Regnier N., Defaye G.: A 3D study on the effect of gate location on the cooling of polymer by injection molding. Int. J. Heat Fluid Flow. 30, 1218–1229 (2009) doi:10.1016/j.ijheatfluidflow.2009.06.005

    Article  Google Scholar 

  14. Wang X., Li X.: Numerical simulation of three dimensional non-Newtonian free surface flows in injection molding using ALE finite element method. Finite Elem. Anal. Des. 46, 551–562 (2010) doi:10.1016/j.finel.2010.02.003

    Article  Google Scholar 

  15. Shen Y.-K., Wu C.-W., Yu Y.-F., Chung H.-W.: Analysis for optimal gate design of thin-walled injection molding. Int. Commun. Heat Mass Transf. 35, 728–734 (2008) doi:10.1016/j.icheatmasstransfer.2008.01.014

    Article  Google Scholar 

  16. Ozdemir A., Uluer O., Guldas A.: Flow front advancement of molten thermoplastic materials during filling stage of a mold cavity. Polym. Test. 23, 957–966 (2004) doi:10.1016/j.polymertesting.2004.04.011

    Article  Google Scholar 

  17. Rudert A., Schwarze R.: Experimental and numerical investigation of a viscoplastic Carbopol gel injected into a prototype 3D mold cavity. J. Nonnewton. Fluid Mech. 161, 60–68 (2009) doi:10.1016/j.jnnfm.2009.04.006

    Article  MATH  Google Scholar 

  18. Chen C.P., Chuang M.T., Hsiao Y.H., Yang Y.K., Tsai C.H.: Simulation and experimental study in determining injection molding process parameters for thin-shell plastic parts via design of experiments analysis. Expert Syst. Appl. 36, 10752–10759 (2009)

    Article  Google Scholar 

  19. Khor C.Y., Ariff Z.M., Ani F.C., Mujeebu M.A., Abdullah M.K., Abdullah M.Z. et al.: Three-dimensional numerical and experimental investigations on polymer rheology in meso-scale injection molding. Int. Commun. Heat Mass Transf. 37, 131–139 (2010) doi:10.1016/j.icheatmasstransfer.2009.08.011

    Article  Google Scholar 

  20. Gou G., Xie P., Yang W., Ding Y.: Online measurement of rheological properties of polypropylene based on an injection molding machine to simulate the injection-molding process. Polym. Test. 30, 826–832 (2011) doi:10.1016/j.polymertesting.2011.08.005

    Article  Google Scholar 

  21. Fernandez A., Muniesa M., Javierre C.: In-line rheological testing of thermoplastics and a monitored device for an injection moulding machine: Application to raw and recycled polypropylene. Polym. Test. 33, 107–115 (2014) doi:10.1016/j.polymertesting.2013.11.008

    Article  Google Scholar 

  22. Abdullah M.K., Abdullah M.Z., Mujeebu M.A., Gitano H., Ariff Z.M., Raza R., Ahmad K.A.: Three-dimensional modeling of mold filling in microchip encapsulation process with a matrix-array arrangement. J. Electron. Packag. 132(1), 014502 (2010)

    Article  Google Scholar 

  23. An C.-C., Chen R.-H.: The experimental study on the defects occurrence of SL mold in injection molding. J. Mater. Process. Technol. 201, 706–709 (2008) doi:10.1016/j.jmatprotec.2007.11.179

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Abdullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusdi, M.S., Abdullah, M.Z., Mahmud, A.S. et al. Numerical Investigation on the Effect of Pressure and Temperature on the Melt Filling During Injection Molding Process. Arab J Sci Eng 41, 1907–1919 (2016). https://doi.org/10.1007/s13369-016-2039-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2039-0

Keywords

Navigation