Skip to main content
Log in

Parameter identification of 42CrMo4 steel hot forging plastic flow behaviour using industrial upsetting presses and finite element simulations

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

An experimental-numerical methodology was proposed for the parameter identification of constitutive laws, when applied to hot forging. Industrial presses were directly used to generate the reference experiments for identification. The strain and temperature heterogeneity that appears during on-press compression experiments was taken into account by an FE-based inverse method. Specific experiments were designed for the identification of the heat transfer and friction coefficients. A testing tool was designed and instrumented with displacement sensors and a force cell. This was then used on a hydraulic press and a screw press in order to cover a large range of strain rates. The identified parameter set was validated with respect to specialized plastometers, and a semi-industrial validation forging process. A reasonable accuracy was observed, particularly in realistic forging conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Avrami M (1939) Kinetics of Phase Change. I General Theory. J. Chem. Phys. 7(12):1103–1112. https://doi.org/10.1063/1.1750380

    Article  Google Scholar 

  2. Sandström R, Lagneborg R (1975) A model for hot working occurring by recrystallization. Acta Metall. 23(3):387–398. https://doi.org/10.1016/0001-6160(75)90132-7

    Article  Google Scholar 

  3. McQueen HJ (1982) Review of Simulations of Multistage Hot-Forming of Steels. Can. Metall. Q. 21(4):445–460. https://doi.org/10.1179/cmq.1982.21.4.445

    Article  Google Scholar 

  4. Sellars CM, Tegart WJMG (1972) Hot Workability. Int. Metall. Rev. 17(1):1–24. https://doi.org/10.1179/imtlr.1972.17.1.1

    Article  Google Scholar 

  5. Luton MJ, Sellars CM (1969) Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation. Acta Metall. 17(8):1033–1043. https://doi.org/10.1016/0001-6160(69)90049-2

    Article  Google Scholar 

  6. Pauskar P, Shivpuri R (1999) Microstructure and Mechanics Interaction in the Modeling of Hot Rolling of Rods. CIRP Ann. 48(1):191–194. https://doi.org/10.1016/S0007-8506(07)63163-1

    Article  Google Scholar 

  7. Hensel A, Spittel T (1978) Kraft und Arbeitsbedarf bildsamer Formgebungsverfahren. Leizig, VEB Deutscher Verlag für Grundstoffindustrie

    Google Scholar 

  8. Jäckel I (1991) Application-oriented modelling of hot yield strength of metallic materials. Steel Res. 62(10):441–446. https://doi.org/10.1002/srin.199100425

    Article  Google Scholar 

  9. Gavrus A, Massoni E, Chenot JL (1998) The analysis of inelastic behaviour formulated as an inverse rheological approach. Meas. Sci. Technol. 9(6):848–863. https://doi.org/10.1088/0957-0233/9/6/002

    Article  MATH  Google Scholar 

  10. Bariani PF, Dal Negro T, Bruschi S (2004) Testing and modelling of material response to deformation in bulk metal forming. CIRP Ann.-Manuf. Technol. 53(2):573–595

    Article  Google Scholar 

  11. Lin YC, Chen X-M (2011) A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater. Des. 32(4):1733–1759. https://doi.org/10.1016/j.matdes.2010.11.048

    Article  Google Scholar 

  12. Gelin JC, Ghouati O (1994) An inverse method for determining viscoplastic properties of aluminium alloys. J. Mater. Process. Technol. 45(1–4):435–440. https://doi.org/10.1016/0924-0136(94)90378-6

    Article  Google Scholar 

  13. Gavrus A, Massoni E, Chenot JL (1996) An inverse analysis using a finite element model for identification of rheological parameters. J. Mater. Process. Technol. 60(1–4):447–454. https://doi.org/10.1016/0924-0136(96)02369-2

    Article  Google Scholar 

  14. Kowalski B, Sellars CM, Pietrzyk M (2006) Identification of rheological parameters on the basis of plane strain compression tests on specimens of various initial dimensions. Comput. Mater. Sci. 35(2):92–97. https://doi.org/10.1016/j.commatsci.2005.02.024

    Article  Google Scholar 

  15. Khoddam S, Hodgson PD, Jafari Bahramabadi M (2011) An inverse thermal–mechanical analysis of the hot torsion test for calibrating the constitutive parameters. Mater. Des. 32(4):1903–1909. https://doi.org/10.1016/j.matdes.2010.12.010

    Article  Google Scholar 

  16. Mahnken R, Stein E (1994) The identification of parameters for visco-plastic models via finite-element methods and gradient methods. Model. Simul. Mater. Sci. Eng. 2(3A):597–616. https://doi.org/10.1088/0965-0393/2/3A/013

    Article  Google Scholar 

  17. Andrade-Campos A, Thuillier S, Pilvin P, Teixeira-Dias F (2007) On the determination of material parameters for internal variable thermoelastic–viscoplastic constitutive models. Int. J. Plast. 23(8):1349–1379. https://doi.org/10.1016/j.ijplas.2006.09.002

    Article  MATH  Google Scholar 

  18. de-Carvalho R, Valente RAF, Andrade-Campos A (2011) Optimization strategies for non-linear material parameters identification in metal forming problems. Comput. Struct. 89(1–2):246–255. https://doi.org/10.1016/j.compstruc.2010.10.002

    Article  Google Scholar 

  19. Marie S, Ducloux R, Lasne P, Barlier J, Fourment L (2014) Inverse Analysis of Forming Processes based on FORGE environment, in Key Engineering Materials, 611, 1494–1502, Accessed: Apr. 25, 2017. [Online]. Available: http://www.scientific.net/KEM.611-612.1494

  20. Pöhlandt K (1989) Materials Testing for the Metal Forming Industry. Berlin, Heidelberg: Springer Berlin Heidelberg

  21. Gavrus A, Francillette H, Pham DT (2012) An optimal forward extrusion device proposed for numerical and experimental analysis of materials tribological properties corresponding to bulk forming processes. Tribol. Int. 47:105–121. https://doi.org/10.1016/j.triboint.2011.10.013

    Article  Google Scholar 

  22. Diot S, Guines D, Gavrus A, Ragneau E (2009) Minimization of Friction Influence on the Evaluation of Rheological Parameters From Compression Test: Application to a Forging Steel Behavior Identification. J. Eng. Mater. Technol. 131(1):011001. https://doi.org/10.1115/1.3026543

    Article  Google Scholar 

  23. Hor A, Morel F, Lebrun J-L, Germain G (2013) Modelling, identification and application of phenomenological constitutive laws over a large strain rate and temperature range. Mech. Mater. 64:91–110. https://doi.org/10.1016/j.mechmat.2013.05.002

    Article  Google Scholar 

  24. Pietrzyk M, Jedrzejewski J (2001) Identification of parameters in the history dependent constitutive model for steels. CIRP Ann.-Manuf. Technol. 50(1):161–164

    Article  Google Scholar 

  25. Szeliga D, Gawad J, Pietrzyk M (2006) Inverse analysis for identification of rheological and friction models in metal forming. Comput. Methods Appl. Mech. Eng. 195(48–49):6778–6798. https://doi.org/10.1016/j.cma.2005.03.015

    Article  MATH  Google Scholar 

  26. Sztangret ł, Szeliga D, Kusiak J, Pietrzyk M (2012) Application of inverse analysis with metamodelling for identification of metal flow stress. Can. Metall. Q. 51(4):440–446. https://doi.org/10.1179/1879139512Y.0000000035

    Article  Google Scholar 

  27. Hor A, Morel F, Lebrun J-L, Germain G (2013) An experimental investigation of the behaviour of steels over large temperature and strain rate ranges. Int. J. Mech. Sci. 67:108–122. https://doi.org/10.1016/j.ijmecsci.2013.01.003

    Article  Google Scholar 

  28. Zhang C, Bellet M, Bobadilla M, Shen H, Liu B (2010) A Coupled Electrical–Thermal–Mechanical Modeling of Gleeble Tensile Tests for Ultra-High-Strength (UHS) Steel at a High Temperature. Metall. Mater. Trans. A 41(9):2304–2317. https://doi.org/10.1007/s11661-010-0310-7

    Article  Google Scholar 

  29. Pidvysotskyy V, Łapczyński Z (2018) Characterization of a steel grade on Gleeble simulator, Instytut metalurgii Zelaza, Poland, technical report B0–1613

  30. Durand C, Bigot R, Baudouin C (2018) Contribution to characterization of metal forming machines: application to screw presses. Procedia Manuf. 15:1024–1032. https://doi.org/10.1016/j.promfg.2018.07.391

    Article  Google Scholar 

  31. Diot S, Guines D, Gavrus A, Ragneau E (2007) Two-step procedure for identification of metal behavior from dynamic compression tests. Int. J. Impact Eng. 34(7):1163–1184. https://doi.org/10.1016/j.ijimpeng.2006.07.003

    Article  Google Scholar 

  32. Wang J, Langlois L, Rafiq M, Bigot R, Lu H (2014) Study of the hot forging of weld cladded work pieces using upsetting tests. J. Mater. Process. Technol. 214(2):365–379. https://doi.org/10.1016/j.jmatprotec.2013.09.009

    Article  Google Scholar 

  33. Venet G, Balan T, Baudouin C, Bigot R (2018) Direct usage of the wire drawing process for large strain parameter identification. Int. J. Mater. Form. https://doi.org/10.1007/s12289-018-01458-z

  34. Emmerich M, Giotis A, Özdemir M, Bäck T, Giannakoglou K (2002) Metamodel—Assisted Evolution Strategies. In: Guervós JJM, Adamidis P, Beyer H-G, Schwefel H-P, Fernández-Villacañas J-L (eds) Parallel Problem Solving from Nature — PPSN VII, vol. 2439. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 361–370

    Google Scholar 

  35. Male AT, Cockcroft MG (1964) A Method for the Determination of the Coefficient of Friction of Metals under Conditions of Bulk Plastic Deformation. J Inst Met. 93:38–46

    Google Scholar 

  36. Charpentier PL, Stone BC, Ernst SC, Thomas JF (1986) Characterization and modeling of the high temperature flow behavior of aluminum alloy 2024. Metall. Trans. A 17(12):2227–2237. https://doi.org/10.1007/BF02645920

    Article  Google Scholar 

  37. Lee CH, Altan T (1972) Influence of Flow Stress and Friction Upon Metal Flow in Upset Forging of Rings and Cylinders. J. Eng. Ind. 94(3):775. https://doi.org/10.1115/1.3428250

    Article  Google Scholar 

  38. Saha PK, Wilson WRD (1994) Influence of plastic strain on friction in sheet metal forming. Wear 172(2):167–173. https://doi.org/10.1016/0043-1648(94)90284-4

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Valeriy Pidvysotskyy and Prof. Roman Kuziak from IMŻ Gliwice (Poland) who performed the Gleeble experiments. The press-shop experimental work was carried out with substantial contributions from Alexandre Fendler, Sébastien Burgun and Stéphane Mathieu (from Arts et Metiers) and Josselin Schumacker (from AMValor). The DIL805 plasto-dilatometer experiments were performed at ABS Centre Métallurgique (ACM), Metz (France).

Funding

The first author received funding from the French Ministry of National Education, Higher Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tudor Balan.

Ethics declarations

Declaration of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venet, G., Baudouin, C., Pondaven, C. et al. Parameter identification of 42CrMo4 steel hot forging plastic flow behaviour using industrial upsetting presses and finite element simulations. Int J Mater Form 14, 929–945 (2021). https://doi.org/10.1007/s12289-020-01609-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-020-01609-1

Keywords

Navigation