Skip to main content
Log in

Models for shear properties/behavior of dry fibrous materials at various scales: a review

  • Review
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

During forming operations of dry fibrous materials in order to get the composite preforms, the deformation mode is substantially determined by the occurring shear strains. Consideration of the material shear response namely from the theoretical point of view has gained high importance because multi-scale nature and anisotropy of fibrous materials complicates their experimental investigation, which raises the question of the tests realizability, complexity, and cost. This work analyses and classifies the existing theoretical approaches for the shear prediction with respect to the mathematical principles employed, as well as with respect to the architecture of diverse fibrous materials, to which the approach can be applied. Both classifications depend in turn on the main criterion of classification emphasized here – the scale of observation of the shear load. According to the theoretical framework, the approaches form the main groups based either on purely geometrical reasoning, or on finite elements analysis, or on energy minimization, or on forces equilibrium principle. The approaches are compared according to the total of mechanical factors included in their analysis and typical for a certain stage of shear load and a certain scale (micro-, meso-, or macro-). The advantages and difficulties of each of the methods are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Peirce F (1930) J Text Inst 21:377

    Article  Google Scholar 

  2. van Wyk C (1946) J Text Inst 37:285

    Article  Google Scholar 

  3. Abbott N (1951) Text Res J 21(6):435

    Article  Google Scholar 

  4. Vidal-Sallé E, Boisse P (2009) Modelling and predicting textile behaviour (Taylor and Francis), chap. Modelling the structures and properties of woven fabrics, pp 144–179

  5. Boisse P, Zouari B, Daniel J (2006) Compos A Appl Sci Manuf 37:2201

    Article  Google Scholar 

  6. Hamila N, Boisse P (2007) Appl Compos Mater 14(4):235

    Article  Google Scholar 

  7. Dumont F, Hivet G, Rotinat R, Launay J, Boisse P, Vacher P (2003) Mèch Ind 627–635

  8. Lomov S, Huysmans G, Luo Y, Parnas R, Prodromou A, Verpoest I, Phelan F (2001) Compos A Appl Sci Manuf 32(10):1379

    Article  Google Scholar 

  9. Dumont F (2003) Contribution à l’expérimentaion et à la modélisation du comportement mécanique de renforts de composites tissés. Ph.D. thesis, Université d’Orléans, Université de Paris 6, France

  10. Lomov S, Barburski M, Stoilova T, Verpoest I, Akkerman R, Loendersloot R, ten Thije R (2005) Compos A Appl Sci Manuf 36(9):1188

    Article  Google Scholar 

  11. Cao J, Akkerman R, Boisse P, Chen J, Cheng H, de Graaf E, Gorczyca J, Harrison P, Hivet G, Launay J, Lee W, Liu L, Lomov S, Long A, de Luycker E, Morestin F, Padvoiskis J, Peng X, Sherwood J, Stoilova T, Tao X, Verpoest I, Willems A, Wiggers J, Yu T, Zhu B (2008) Compos A Appl Sci Manuf 39(6):1037

    Article  Google Scholar 

  12. Hu JL, Teng JG (1996) Finite Elem Anal Des 21:225

    Article  MATH  Google Scholar 

  13. Ng HN, Grimsdale RL (1996) IEEE Comput Graph Text Appar 16:28

    Article  Google Scholar 

  14. Pickett A, Creech G, de Luca P (2005) Eur J Comput Mech 14:677

    MATH  Google Scholar 

  15. Boisse P, Hamila N, Helenon F, Hagège B, Cao J (2008) Int J Mater Form 1:21

    Article  Google Scholar 

  16. Boisse P, Aimène Y, Dogui A, Dridi S, Gatouillat S, Hamila N, Aurangzeb Khan M, Mabrouki T, Morestin F, Vidal-Sallé E (2010) Int J Mater Form 3:1229

    Article  Google Scholar 

  17. Syerko E, Comas-Cardona S, Binetruy C (2012) Compos A Appl Sci Manuf 43(8):1365

    Article  Google Scholar 

  18. Creech G, Pickett A (2006) J Mater Sci 41(20):6725

    Article  Google Scholar 

  19. Peng X, Cao J (2005) Compos A Appl Sci Manuf 36(6):859

    Article  Google Scholar 

  20. Aimène Y, Vidal-Sallé E, Hagège B, Sidoroff F, Boisse P (2010) J Compos Mater 44(1):5

    Article  Google Scholar 

  21. Yu W, Harrison P, Long A (2005) Compos A Appl Sci Manuf 36(8):1079

    Article  Google Scholar 

  22. Potter K (1980) Controller. HMSO, London, pp 1564–1579

    Google Scholar 

  23. Robertson R, Hsiue E, Sickafus E, Yeh G (1981) Polym Compos 2:126

    Article  Google Scholar 

  24. Bergsma O, Huisman J (1988) In: Brebbia C, de Wilde W, Blain W (eds) 2nd international conference on computer aided design in composite material technology. Springer Verlag, Southampton, pp 323–333

    Google Scholar 

  25. Prodromou AG, Chen J (1997) Compos A Appl Sci Manuf 28(5):491

    Article  Google Scholar 

  26. Long A (2001) 4th international ESAFORM conference on material forming, pp 99–102

  27. Sickafus EN, Mackie NA (1974) Acta Crystallogr A 30(6):850

    Article  Google Scholar 

  28. Xue P, Peng X, Cao J (2003) Compos A Appl Sci Manuf 34(2):183

    Article  Google Scholar 

  29. Yu W, Pourboghrat F, Chung K, Zampaloni M, Kang T (2002) Compos A Appl Sci Manuf 33(8):1095

    Article  Google Scholar 

  30. Aimène Y, Hagège B, Sidoroff F, Vidal-Sallé E, Boisse P, Dridi S (2008) Int J Mater Form 1:811

    Article  Google Scholar 

  31. Charmetant A, Orliac J, Vidal-Sallé E, Boisse P (2012) Compos Sci Technol 72:1352

    Article  Google Scholar 

  32. Ben Boubaker B, Haussy B, Ganghoffer JF (2007) Compos B Eng 38(4):498

    Article  Google Scholar 

  33. Potter K (2002) Compos A Appl Sci Manuf 33(1):63

    Article  Google Scholar 

  34. ten Thije R, Akkerman R, Huétink J (2007) Comput Methods Appl Mech Eng 196(33–34):3141

    Article  MATH  Google Scholar 

  35. Rozant O, Bourban PE, Manson JA (2000) Compos A Appl Sci Manuf 31(11):1167

    Article  Google Scholar 

  36. Page J, Wang J (2000) Compos Sci Technol 60(7):977

    Article  Google Scholar 

  37. Page J, Wang J (2002) Finite Elem Anal Des 38(8):755

    Article  MATH  Google Scholar 

  38. Sun H, Pan N (2005) Compos Struct 67(3):317

    Article  Google Scholar 

  39. Lomov S, Truong T, Chi Verpoest I, Peeters T, Roose D, Boisse P, Gasser A (2003) Int J Form Process 6(3–4):413

    Article  Google Scholar 

  40. Zhu B, Yu T, Tao X (2007) Compos A Appl Sci Manuf 38(8):1821

    Article  Google Scholar 

  41. Zhu B, Yu TX, Teng J, Tao XM (2009) J Compos Mater 43(2):125

    Article  Google Scholar 

  42. Kawabata S, Niwa M, Kawai H (1973) J Text Inst 64(2):62

    Article  Google Scholar 

  43. Naik N, Tiwari S, Kumar R (2003) Compos Sci Technol 63(5):609

    Article  Google Scholar 

  44. Lomov S, Verpoest I (2006) Compos Sci Technol 66(7–8):919

    Article  Google Scholar 

  45. Xue P, Cao J, Chen J (2005) Compos Struct 70(1):69

    Article  Google Scholar 

  46. King M, Jearanaisilawong P, Socrate S (2005) Int J Solids Struct 42(13):3867

    Article  MATH  Google Scholar 

  47. Boisse P, Gasser A, Hagège B, Billoët J (2005) J Mater Sci 40:5955

    Article  Google Scholar 

  48. Badel P, Vidal-Sallé E, Boisse P (2007) Comput Mater Sci 40(4):439

    Article  Google Scholar 

  49. Badel P, Vidal-Sallé E, Maire E, Boisse P (2008) Compos Sci Technol 68(12):2433

    Article  Google Scholar 

  50. Badel P, Gauthier S, Vidal-Sallé E, Boisse P (2009) Compos A Appl Sci Manuf 40(8):997

    Article  Google Scholar 

  51. Lin H, Long A, Sherburn M, Clifford M (2008) Int J Mater Form 1:899

    Article  Google Scholar 

  52. Durville D (2008) ArXiv e-prints

  53. Khan M, Mabrouki T, Vidal-Sallé E, Boisse P (2010) J Mater Proc Technol 210:378

    Article  Google Scholar 

  54. Zouari B, Daniel JL, Boisse P (2006) Comput Struct 84:351

    Article  Google Scholar 

  55. Hamila N, Boisse P (2008) Compos B Eng 39(6):999

    Article  Google Scholar 

  56. Yu X, Cartwright B, McGuckin D, Ye L, Mai YW (2006) Compos A Appl Sci Manuf 37(5):790

    Article  Google Scholar 

  57. ten Thije R, Akkerman R (2008) Compos A Appl Sci Manuf 39(7):1167

    Article  Google Scholar 

  58. Wiggers J, Long A, Harrison P, Rudd C (2003) 6th international ESAFORM conference on material forming, pp 851–854

  59. Cai Z, Gutowski T (1992) J Compos Mater 26(8):1207

    Article  Google Scholar 

  60. Bel S, Hamila N, Boisse P, Dumont F (2012) Compos A Appl Sci Manuf 43:2269

    Article  Google Scholar 

  61. Bel S, Boisse P, Dumont F (2012) Appl Compos Mater 19(3–4):513

    Article  Google Scholar 

  62. Hofstee J, van Keulen F (2001) Compos Struct 54(2–3):179

    Article  Google Scholar 

  63. Durville D (2005) J Mater Sci 40:5941

    Article  Google Scholar 

  64. Durville D (2007) 18ème Congrès Français de Mécanique. Grenoble

  65. Durville D (2007) Micro-symposium on finite element modelling of textiles and textile composites, Saint-Petersbourg

  66. Durville D (2010) Int J Mater Form 3:1241

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Syerko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syerko, E., Comas-Cardona, S. & Binetruy, C. Models for shear properties/behavior of dry fibrous materials at various scales: a review. Int J Mater Form 8, 1–23 (2015). https://doi.org/10.1007/s12289-013-1138-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-013-1138-7

Keywords

Navigation