Skip to main content
Log in

Investigations on hard machining of Impax Hi Hard tool steel

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

In this paper, experimental investigations are carried out by end milling process on hardened tool steel, Impax Hi Hard (Hardness 55 HRC) a newly developed tool steel material used by tool and die making industries. Experiments are performed with an aim to study performance investigations of machining parameters such as cutting speed, feed, depth of cut and width of cut with consideration of multiple responses viz. volume of material removed, tool wear, tool life and surface finish to evaluate the performance of PVD coated carbide inserts and ball end mill cutters. It has been observed through scanning electron microscope, X-ray diffraction technique (EDX) that chipping and adhesion are active tool wear mechanisms and saw-toothed chips are formed while machining of Impax Hi Hard steel. It is also noticed out that tool life is not enhanced while machining with minimum quantity lubricant than dry machining. From the investigations, it is observed that hard machining can be considered as an alternative to grinding and EDM, traditional methods of machining difficult-to-machine materials i.e. hardened steel with hardness greater than 50 HRC with a scope of improved productivity, increased flexibility, decreased capital expenses and reduced environmental waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. Koshy P, Dewes RC, Aspinwall DK (2002) High Speed end milling of hardened tool steel (~58 HRC). J Mater Process Tech 127:266–273

    Article  Google Scholar 

  2. King RI (Ed) (1985) Handbook of high speed machining technology. Chapman & Hall, London

  3. Dewas RC, Aspinwall DK (1997) A review of ultra high speed milling of hardened steels. J Mater Process Tech 69:1–17

    Article  Google Scholar 

  4. Dutta AK, Chattopadhyaya AB, Ray KK (2006) Progressive flank wear and machining performance of silver toughened alumina cutting tool inserts. Wear 261:885–895

    Article  Google Scholar 

  5. Urbanski JP, Kosy P, Dewas RC, Aspinwall DK (2000) High speed machining of moulds and dies for net shape manufacture. Mater Des 21:395–402

    Google Scholar 

  6. Arsecularatne JA, Zhang LC, Montross C, Mathew P (2006) On machining of hardened AISI D2 steel with PCBN tools. J Mater Process Tech 171:244–252

    Article  Google Scholar 

  7. Senthil Kumar A, Raja Durai A, Sornakumar T (2006) The effect of tool wear on tool life of alumina-based ceramic cutting tools while machining hardened martensitic ceramic cutting tools while machining hardened martensitic stainless steel. J Mater Process Tech 173:151–156

    Article  Google Scholar 

  8. Attanasio A, Gelfi M, Giardini C, Remino C (2006) Minimum quantity lubrication in turning: effect on tool wear. Wear 260:333–338

    Article  Google Scholar 

  9. Camuscu N, Aslan E (2005) A Comparative study on cutting tool performance in end milling of AISI D3 tool steel. J Mater Process Tech 170:121–126

    Article  Google Scholar 

  10. Choudhury IA, See NL, Zukhairi M (2005) Machining with chamfered tools. J Mater Process Tech 170:115–120

    Article  Google Scholar 

  11. Su YL, Liu TH, Su CT, Yao SH, Kao WH, Cheng KW (2006) Wear of CrC-coated carbide tools in dry machining. J Mater Process Tech 171:108–117

    Article  Google Scholar 

  12. El-Wardany TI, Kishawy HA, Elbestawi MA (2000) Surface integrity of die materials in high speed machining, Part 1: micro graphical analysis. Trans ASME J Manuf Sci Eng 122:620–631

    Article  Google Scholar 

  13. El-Wardany TI, Kishawy HA, Elbestawi MA (2000) Surface integrity of die materials in high speed machining, Part 2: micro hardness variations and residual stresses. Trans ASME J Manuf Sci Eng 122:632–641

    Article  Google Scholar 

  14. Özel T (2003) Modelling of hard part machining: effect of insert edge preparation in CBN cutting tools. J Mater Process Tech 141:284–293

    Article  Google Scholar 

  15. Kato H, Shintani K, Sumiya H (2002) Cutting performance of a binder less sintered cubic boron nitride tool in the high speed milling of grey cast iron. J Mater Process Tech 127:217–221

    Article  Google Scholar 

  16. Klocke F, Eisenblatter G (1997) Dry cutting. CIRP Ann 46(2):519–526

    Article  Google Scholar 

  17. Klocke F, Schulz A, Gerschwiler K et al (1996) Saubere Fertigungstechnologien-Ein Wettbewerbsvorteil von morgen? In: Wettbewerbsfaktor Produktiontechnik-Aachener Perspektiven, Aachener Werkzeugmaschinen-Kolloguium (AWK), VDI, Dusseldorf

  18. ISO (1989) ISO 8688-2, tool life testing in milling, part 1 and part 2; end milling

  19. Oxley PLB (1989) The mechanics of machining: an analytical approach to assessing machinability. Horwood, Chichester

    Google Scholar 

  20. Shaw MC (2003) The size effect in metal cutting. Sadhana 28:875–896

    Article  Google Scholar 

  21. Trent EM, Wright PK (2000) Metal cutting. Butterworth-Heinemann, Boston

    Google Scholar 

  22. Tanaka Y, Tsuwa H, Kitano M (1967) Cutting mechanism in ultra high speed machining. ASME Prod-14: paper no. 67

  23. King RI, Vaughn RLA (1984) Synoptic review of high speed machining from Salomon to the present. In: Komadurai R, Subramanian K, Von Turkovich BF (eds) High speed machining (presented at the winter annual meeting of the American Society of Mechanical Engineers, New Orleans, LA). ASME, New York

    Google Scholar 

  24. Komadurai R, Flom DG, Lee M (1985) Highlights of the DARPA advanced machining research program. Trans ASME J Eng Ind 107:325–335

    Google Scholar 

  25. Shaw MC (1993) Chip formation in the machining of hardened steel. CIRP Ann 42(1):29–33

    Article  Google Scholar 

  26. Nakayama K, Arai M (1992) Comprehensive chip formation classification on the cutting mechanism. CIRP Ann 41(1):71–74

    Article  Google Scholar 

  27. Komanduri R, Schroeder T (1982) On the catastrophic shear instability of high speed machining of an AISI 4340 steel. Trans ASME J Eng Ind 104:121–131

    Article  Google Scholar 

  28. Komanduri R, Brown RH (1981) On the mechanism of chip segmentation in machining. Trans ASME J Eng Ind 103(1):33–51

    Google Scholar 

  29. Schulz H, Hock S (1995) High speed milling of dies and molds—cutting conditions and technology. CIRP Ann 44(1):35–38

    Article  Google Scholar 

  30. Venkatesh VC, Zhou DQ, Xue W, Quinto DT (1993) A study of chip surface characteristics during the machining of steel. CIRP Ann 42(1):631–636

    Article  Google Scholar 

  31. Jawahir IS, Van Luttervelt CA (1993) Recent developments in chip control research and application. CIRP Ann 42(2):659–693

    Article  Google Scholar 

  32. Toenshoff HK (1969) Chip formation at high cutting speed. ASME winter meeting

  33. Kishawy HA, Elbestawi MA (1997) Effects of process parameters on chip formation when machining hardened steel. In: Proceedings of the International Mechanical Engineering Congress and Exposition, Dallas, Texas, vol 6-2. ASME-MED, pp 13–20

  34. Kishawy HA, Elbestawi MA (1998) Effects of edge preparation and cutting speed on surface integrity of die materials in hard machining. In: Proceedings of the International Mechanical Engineering Congress and Exposition, vol 8. MED, pp 269–276

  35. Oishi K (1995) Built up edge elimination in mirror cutting of hardened steel. Trans ASME J Eng Ind 117(1):62–66

    MathSciNet  Google Scholar 

  36. Nelson S, Schueller JK, Tlusty J (1998) Tool wear in milling hardened die steel. Trans ASME J Manuf Sci Eng 120:669–673

    Article  Google Scholar 

Download references

Acknowledgement

The principal author would like to express his gratitude to Dr. Gopal P. Sinha, Director, CMERI, Durgapur for his kind permission to publish this work. He is grateful to DAAD for sponsoring fellowship programme and to Fraunhofer Institute for Production Technology, Aachen, Germany for providing necessary facilities for experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bala Murugan Gopalsamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopalsamy, B.M., Mondal, B., Ghosh, S. et al. Investigations on hard machining of Impax Hi Hard tool steel. Int J Mater Form 2, 145–165 (2009). https://doi.org/10.1007/s12289-009-0400-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-009-0400-5

Keywords

Navigation