Skip to main content
Log in

The size effect in metal cutting

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

When metal is removed by machining there is substantial increase in the specific energy required with decrease in chip size. It is generally believed this is due to the fact that all metals contain defects (grain boundaries, missing and impurity atoms, etc.), and when the size of the material removed decreases, the probability of encountering a stress-reducing defect decreases. Since the shear stress and strain in metal cutting is unusually high, discontinuous microcracks usually form on the metal-cutting shear plane. If the material being cut is very brittle, or the compressive stress on the shear plane is relatively low, microcracks grow into gross cracks giving rise to discontinuous chip formation. When discontinuous microcracks form on the shear plane they weld and reform as strain proceeds, thus joining the transport of dislocations in accounting for the total slip of the shear plane. In the presence of a contaminant, such as CCI4 vapour at a low cutting speed, the rewelding of microcracks decreases, resulting in decrease in the cutting force required for chip formation. A number of special experiments are described in the paper that support the transport of microcracks across the shear plane, and the important role compressive stress plays on the shear plane. Relatively recently, an alternative explanation for the size effect in cutting was provided based on the premise that shear stress increases with increase in strain rate. When an attempt is made to apply this to metal cutting by Dineshet al (2001) it is assumed in the analysis that the von Mises criterion pertains to the shear plane. This is inconsistent with the experimental findings of Merchant. Until this difficulty is taken care of, together with the promised experimental verification of the strain rate approach, it should be assumed that the strain rate effect may be responsible for some notion of the size effect in metal cutting. However, based on the many experiments discussed here, it is very unlikely that it is totally responsible for the size effect in metal cutting as inferred in Dineshet al (2001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, M.C. The size effect in metal cutting. Sadhana 28, 875–896 (2003). https://doi.org/10.1007/BF02703319

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703319

Keywords

Navigation