Skip to main content

Advertisement

Log in

Rediscovery of antimicrobial peptides as therapeutic agents

  • Minireview
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

In recent years, the occurrence of antibiotic-resistant pathogens is increasing rapidly. There is growing concern as the development of antibiotics is slower than the increase in the resistance of pathogenic bacteria. Antimicrobial peptides (AMPs) are promising alternatives to antibiotics. Despite their name, which implies their antimicrobial activity, AMPs have recently been rediscovered as compounds having antifungal, antiviral, anticancer, antioxidant, and insecticidal effects. Moreover, many AMPs are relatively safe from toxic side effects and the generation of resistant microorganisms due to their target specificity and complexity of the mechanisms underlying their action. In this review, we summarize the history, classification, and mechanisms of action of AMPs, and provide descriptions of AMPs undergoing clinical trials. We also discuss the obstacles associated with the development of AMPs as therapeutic agents and recent strategies formulated to circumvent these obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agerberth, B., Gunne, H., Odeberg, J., Kogner, P., Boman, H.G., and Gudmundsson, G.H. 1995. FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc. Natl. Acad. Sci. USA 92, 195–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babii, O., Afonin, S., Ishchenko, A.Y., Schober, T., Negelia, A.O., Tolstanova, G.M., Garmanchuk, L.V., Ostapchenko, L.I., Komarov, I.V., and Ulrich, A.S. 2018. Structure-activity relationships of photoswitchable diarylethene-based β-hairpin peptides as membranolytic antimicrobial and anticancer agents. J. Med. Chem. 61, 10793–10813.

    Article  CAS  PubMed  Google Scholar 

  • Bahar, A.A. and Ren, D. 2013. Antimicrobial peptides. Pharmaceuticals 6, 1543–1575.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Begley, M., Cotter, P.D., Hill, C., and Ross, R.P. 2009. Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for LanM proteins. Appl. Environ. Microbiol. 75, 5451–5460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benkerroum, N. 2009. Antimicrobial activity of lysozyme with special relevance to milk. Afr. J. Biotechnol. 725, 4856–4867.

    Google Scholar 

  • Bommarius, B., Jenssen, H., Elliott, M., Kindrachuk, J., Pasupuleti, M., Gieren, H., Jaeger, K.E., Hancock, R.E.W., and Kalman, D. 2010. Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli. Peptides 31, 1957–1965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breukink, E. and de Kruijff, B. 2006. Lipid II as a target for antibiotics. Nat. Rev. Drug Discov. 5, 321–323.

    Article  CAS  PubMed  Google Scholar 

  • Brogden, K.A. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238–250.

    Article  CAS  PubMed  Google Scholar 

  • Calhoun, D.M., Woodhams, D., Howard, C., LaFonte, B.E., Gregory, J.R., and Johnson, P.T.J. 2016. Role of antimicrobial peptides in amphibian defense against trematode infection. EcoHealth 13, 383–391.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carpenter, C.F. and Chambers, H.F. 2004. Daptomycin: another novel agent for treating infections due to drug-resistant Gram-positive pathogens. Clin. Infect. Dis. 38, 994–1000.

    Article  CAS  PubMed  Google Scholar 

  • Catania, A., Garofalo, L., Cutuli, M., Gringeri, A., Santagostino, E., and Lipton, J.M. 1998. Melanocortin peptides inhibit production of proinflammatory cytokines in blood of HIV-infected patients. Peptides 19, 1099–1104.

    Article  CAS  PubMed  Google Scholar 

  • Chalekson, C.P., Neumeister, M.W., and Jaynes, J. 2003. Treatment of infected wounds with the antimicrobial peptide D2A21. J. Trauma 54, 770–774.

    Article  CAS  PubMed  Google Scholar 

  • Chan, D.I., Prenner, E.J., and Vogel, H.J. 2006. Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim. Biophys. Acta 1758, 1184–1202.

    Article  CAS  PubMed  Google Scholar 

  • Chandy, T. and Sharma, C.P. 1990. Chitosan-as a biomaterial. Biomater. Artif. Cells Artif. Organs 18, 1–24.

    Article  CAS  PubMed  Google Scholar 

  • Chen, R., Cole, N., Willcox, M.D.P., Park, J., Rasul, R., Carter, E., and Kumar, N. 2009. Synthesis, characterization and in vitro activity of a surface-attached antimicrobial cationic peptide. Biofouling 25, 517–524.

    Article  CAS  PubMed  Google Scholar 

  • Chen, A.Y., Zervos, M.J., and Vazquez, J.A. 2007. Dalbavancin: a novel antimicrobial. Int. J. Clin. Pract. 61, 853–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa, F., Carvalho, I.F., Montelaro, R.C., Gomes, P., and Martins, M.C.L. 2011. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater. 7, 1431–1440.

    Article  CAS  PubMed  Google Scholar 

  • Cotter, P.D., Ross, R.P., and Hill, C. 2013. Bacteriocins-a viable alternative to antibiotics?. Nat. Rev. Microbiol. 11, 95–105.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham, F.E., Proctor, V.A., and Goetsch, S.J. 1991. Egg-white lysozyme as a food preservative: an overview. Worlds Poult. Sci. J. 47, 141–163.

    Article  Google Scholar 

  • de Leeuw, E., Li, C., Zeng, P., Li, C., Diepeveen-de Buin, M., Lu, W.Y., Breukink, E., and Lu, W. 2010. Functional interaction of human neutrophil peptide-1 with the cell wall precursor lipid II. FEBS Lett. 584, 1543–1548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doherty, T., Waring, A.J., and Hong, M. 2008. Dynamic structure of disulfide-removed linear analogs of tachyplesin-I in the lipid bilayer from solid-state NMR. Biochemistry 47, 1105–1116.

    Article  CAS  PubMed  Google Scholar 

  • Dubos, R.J. 1939a. Studies on a bactericidal agent extracted from a soil Bacillus: I. Preparation of the agent. Its activity in vitro. J. Exp. Med. 70, 1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubos, R.J. 1939b. Studies on a bactericidal agent extracted from a soil Bacillus: II. Protective effect of the bactericidal agent against experimental Pneumococcus infections in mice. J. Exp. Med. 70, 11–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubos, R.J. 1940. The effect of specific agents extracted from soil microorganisms upon experimental bacterial infections. Ann. Intern. Med. 13, 2025–2037.

    Article  CAS  Google Scholar 

  • Ellington, A.D. and Szostak, J.W. 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822.

    Article  CAS  PubMed  Google Scholar 

  • Epand, R.M. and Epand, R.F. 2011. Bacterial membrane lipids in the action of antimicrobial agents. J. Pept. Sci. 17, 298–305.

    Article  CAS  PubMed  Google Scholar 

  • Etienne, O., Picart, C., Taddei, C., Haikel, Y., Dimarcq, J.L., Schaaf, P., Voegel, J.C., Ogier, J.A., and Egles, C. 2004. Multilayer polyelectrolyte films functionalized by insertion of defensin: a new approach to protection of implants from bacterial colonization. Antimicrob. Agents Chemother. 48, 366–3669.

    Article  CAS  Google Scholar 

  • Faber, C., Stallmann, H.P., Lyaruu, D.M., Joosten, U., von Eiff, C., van Nieuw Amerongen, A., and Wuisman, P.I.J.M. 2005. Comparable efficacies of the antimicrobial peptide human lactoferrin 1–11 and gentamicin in a chronic methicillin-resistant Staphylococcus aureus osteomyelitis model. Antimicrob. Agents Chemother. 49, 2438–2444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fennell, J.F., Shipman, W.H., and Cole, L.J. 1967. Antibacterial action of a bee venom fraction (melittin) against a penicillin-resistant Staphylococcus and other microorganisms. USNRDL-TR-67–101. Res. Dev. Tech. Rep. 5, 1–13.

    Google Scholar 

  • Fleming, A. 1922. On a remarkable bacteriolytic element found in tissues and secretions. Proc. R. Soc. Lond. B 93, 306–317.

    Article  CAS  Google Scholar 

  • Ganz, T., Selsted, M.E., Szklarek, D., Harwig, S.S., Daher, K., Bainton, D.F., and Lehrer, R.I. 1985. Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest. 76, 1427–1435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaspar, D., Veiga, A.S., and Castanho, M.A.R.B. 2013. From antimicrobial to anticancer peptides. A review. Front. Microbiol. 4, 294.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gause, G.F. and Brazhnikova, M.G. 1944. Gramicidin S and its use in the treatment of infected wounds. Nature 154, 703.

    Article  Google Scholar 

  • Giles, F.J., Rodriguez, R., Weisdorf, D., Wingard, J.R., Martin, P.J., Fleming, T.R., Goldberg, S.L., Anaissie, E.J., Bolwell, B.J., Chao, N.J., et al. 2004. A phase III, randomized, double-blind, placebo-controlled, study of iseganan for the reduction of stomatitis in patients receiving stomatotoxic chemotherapy. Leuk. Res. 28, 559–565.

    Article  CAS  PubMed  Google Scholar 

  • Greber, K.E. and Dawgul, M. 2017. Antimicrobial peptides under clinical trials. Curr. Top. Med. Chem. 17, 620–628.

    Article  CAS  PubMed  Google Scholar 

  • Grieco, P., Rossi, C., Colombo, G., Gatti, S., Novellino, E., Lipton, J.M., and Catania, A. 2003. Novel α-melanocyte stimulating hormone peptide analogues with high candidacidal activity. J. Med. Chem. 46, 850–855.

    Article  CAS  PubMed  Google Scholar 

  • Hancock, R.E. 2000. Cationic antimicrobial peptides: towards clinical applications. Expert Opin. Investig. Drugs 9, 1723–1729.

    Article  CAS  PubMed  Google Scholar 

  • Héchard, Y. and Sahl, H.G. 2002. Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 84, 545–557.

    Article  PubMed  Google Scholar 

  • Hilchie, A. and Hoskin, D. 2010. The application of cationic antimicrobial peptides in cancer treatment: Laboratory investigations and clinical potential. In Fialho, A.M. and Chakrabarty, A.M. (eds.), Emerging Cancer Therapy, pp. 309–332. John Wiley & Sons, New Jersey, USA.

    Chapter  Google Scholar 

  • Hill, C.P., Yee, J., Selsted, M.E., and Eisenberg, D. 1991. Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization. Science 251, 1481–1485.

    Article  CAS  PubMed  Google Scholar 

  • Hirano, S. and Noishiki, Y. 1985. The blood compatibility of chitosan and N-acylchitosans. J. Biomed. Mater. Res. 19, 413–417.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y.B., He, L.Y., Jiang, H.Y., and Chen, Y.X. 2012. Role of helicity on the anticancer mechanism of action of cationic-helical peptides. Int. J. Mol. Sci. 13, 6849–6862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hultmark, D., Steiner, H., Rasmuson, T., and Boman, H.G. 1980. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur. J. Biochem. 106, 7–16.

    Article  CAS  PubMed  Google Scholar 

  • Jenssen, H. and Hancock, R.E. 2010. Therapeutic potential of HDPs as immunomodulatory agents. In Giuliani, A. and Rinaldi, A. (eds.), Antimicrobial Peptides. Methods in Molecular Biology, vol. 618, pp. 329–347. Humana Press, Totowa, New Jersey, USA.

    Chapter  Google Scholar 

  • Kang, X., Dong, F., Shi, C., Liu, S., Sun, J., Chen, J., Li, H., Xu, H., Lao, X., and Zheng, H. 2019. DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci. Data 6, 148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang, H.K., Kim, C., Seo, C.H., and Park, Y. 2017. The therapeutic applications of antimicrobial peptides (AMPs): a patent review. J. Microbiol. 55, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan, C.W., Sim, J.H., Shah, K.R., Kolesnikova-Kaplan, A., Shi, W., and Eckert, R. 2011. Selective membrane disruption: mode of action of C16G2, a specifically targeted antimicrobial peptide. Antimicrob. Agents Chemother. 55, 3446–3452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavanagh, K. and Dowd, S. 2004. Histatins: antimicrobial peptides with therapeutic potential. J. Pharm. Pharmacol. 56, 285–289.

    Article  CAS  PubMed  Google Scholar 

  • Khan, N.A. and Benner, R. 2011. Human chorionic gonadotropin: a model molecule for oligopeptide-based drug discovery. Endocr. Metab. Immune Disord. Drug Targets 11, 32–53.

    Article  CAS  PubMed  Google Scholar 

  • Klüver, E., Schulz-Maronde, S., Scheid, S., Meyer, B., Forssmann, W.G., and Adermann, K. 2005. Structure-activity relation of human β-defensin 3: influence of disulfide bonds and cysteine substitution on antimicrobial activity and cytotoxicity. Biochemistry 44, 9804–9816.

    Article  PubMed  CAS  Google Scholar 

  • Kollef, M., Pittet, D., Sánchez García, M., Chastre, J., Fagon, J.Y., Bonten, M., Hyzy, R., Fleming, T.R., Fuchs, H., Bellm, L., et al. 2006. A randomized double-blind trial of iseganan in prevention of ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 173, 91–97.

    Article  CAS  PubMed  Google Scholar 

  • Kong, M., Chen, X.G., Xing, K., and Park, H.J. 2010. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 144, 51–63.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, P., Kizhakkedathu, J.N., and Straus, S.K. 2018. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 8, 4.

    Article  PubMed Central  CAS  Google Scholar 

  • Lamb, H.M. and Wiseman, L.R. 1998. Pexiganan acetate. Drugs 56, 1047–1052.

    Article  CAS  PubMed  Google Scholar 

  • Laverty, G., Gorman, S.P., and Gilmore, B.F. 2012. Antimicrobial peptide incorporated poly(2-hydroxyethyl methacrylate) hydrogels for the prevention of Staphylococcus epidermidis-associated biomaterial infections. J. Biomed. Mater. Res. A 100, 1803–1814.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.H. 2019. Perspectives towards antibiotic resistance: from molecules to population. J. Microbiol. 57, 181–184.

    Article  PubMed  Google Scholar 

  • Lee, E.Y., Lee, M.W., and Wong, G.C.L. 2019. Modulation of toll-like receptor signaling by antimicrobial peptides. Semin. Cell Dev. Biol. 88, 173–184.

    Article  CAS  PubMed  Google Scholar 

  • Lee, B., Park, J., Ryu, M., Kim, S., Joo, M., Yeom, J.H., Kim, S., Park, Y., Lee, K., and Bae, J. 2017. Antimicrobial peptide-loaded gold nanoparticle-DNA aptamer conjugates as highly effective antibacterial therapeutics against Vibrio vulnificus. Sci. Rep. 7, 13572.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, M.T., Yang, P.Y., Charron, N.E., Hsieh, M.H., Chang, Y.Y., and Huang, H.W. 2018. Comparison of the effects of daptomycin on bacterial and model membranes. Biochemistry 57, 5629–5639.

    Article  CAS  PubMed  Google Scholar 

  • Lei, J., Sun, L., Huang, S., Zhu, C., Li, P., He, J., Mackey, V., Coy, D.H., and He, Q. 2019. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res. 11, 3919–3931.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M., and Hoffmann, J.A. 1996. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y. 2011. Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr. Purif. 80, 260–267.

    Article  CAS  PubMed  Google Scholar 

  • Li, P., Nielsen, H.M., and Mìllertz, A. 2012. Oral delivery of peptides and proteins using lipid-based drug delivery systems. Expert Opin. Drug Deliv. 9, 1289–1304.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Wang, X., Wang, X., Teng, D., Mao, R., Hao, Y., and Wang, J. 2017. Research advances on plectasin and its derivatives as new potential antimicrobial candidates. Process Biochem. 56, 62–70.

    Article  CAS  Google Scholar 

  • Li, J., Xu, X., Xu, C., Zhou, W., Zhang, K., Yu, H., Zhang, Y., Zheng, Y., Rees, H.H., Lai, R., et al. 2007. Anti-infection peptidomics of amphibian skin. Mol. Cell. Proteomics 6, 882–894.

    Article  CAS  PubMed  Google Scholar 

  • Lupetti, A., Paulusma-Annema, A., Welling, M.M., Dogterom-Ballering, H., Brouwer, C.P.J.M., Senesi, S., van Dissel, J.T., and Nibbering, P.H. 2003. Synergistic activity of the N-terminal peptide of human lactoferrin and fluconazole against Candida species. Antimicrob. Agents Chemother. 47, 262–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mak, A.S. and Jones, B.L. 1976. The amino acid sequence of wheat β-purothionin. Can. J. Biochem. 54, 835–842.

    Article  CAS  PubMed  Google Scholar 

  • Mankelow, D.P. and Neilan, B.A. 2000. Non-ribosomal peptide antibiotics. Expert Opin. Ther. Pat. 10, 1583–1591.

    Article  CAS  Google Scholar 

  • Mansour, S.C., Pena, O.M., and Hancock, R.E. 2014. Host defense peptides: front-line immunomodulators. Trends Immunol. 35, 443–450.

    Article  CAS  PubMed  Google Scholar 

  • Martin, L., van Meegern, A., Doemming, S., and Schuerholz, T. 2015. Antimicrobial peptides in human sepsis. Front. Immunol. 6, 404.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathew, B. and Nagaraj, R. 2015. Antimicrobial activity of human a-defensin 5 and its linear analogs: N-terminal fatty acylation results in enhanced antimicrobial activity of the linear analogs. Peptides 71, 128–140.

    Article  CAS  PubMed  Google Scholar 

  • McClerren, A.L., Cooper, L.E., Quan, C., Thomas, P.M., Kelleher, N.L., and van der Donk, W.A. 2006. Discovery and in vitro; biosynthesis of haloduracin, a two-component lantibiotic. Proc. Natl. Acad. Sci. USA 103, 17243–17248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercer, D.K., Robertson, J.C., Miller, L., Stewart, C.S., and O’Neil, D.A. 2020. NP213 (Novexatin®): A unique therapy candidate for onychomycosis with a differentiated safety and efficacy profile. Med. Mycol. 58, 1064–1072.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mygind, P.H., Fischer, R.L., Schnorr, K.M., Hansen, M.T., Sönksen, C.P., Ludvigsen, S., Raventós, D., Buskov, S., Christensen, B., De Maria, L., et al. 2005. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437, 975–980.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, L.T., Haney, E.F., and Vogel, H.J. 2011. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 29, 464–472.

    Article  CAS  PubMed  Google Scholar 

  • Nibbering, P.H., Ravensbergen, E., Welling, M.M., van Berkel, L.A., van Berkel, P.H., Pauwels, E.K., and Nuijens, J.H. 2001. Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant bacteria. Infect. Immun. 69, 1469–1476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niemeyer-van der Kolk, T., van der Wall, H., Hogendoorn, G.K., Rijneveld, R., Luijten, S., van Alewijk, D., van den Munckhof, E.H.A., de Kam, M.L., Feiss, G.L., Prens, E.P., et al. 2020. Pharmacodynamic effects of topical omiganan in patients with mild to moderate atopic dermatitis in a randomized, placebo-controlled, phase II trial. Clin. Transl. Sci. 13, 994–1003.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtani, S., Okada, T., Yoshizumi, H., and Kagamiyama, H. 1977. Complete primary structures of two subunits of purothionin A, a lethal protein for brewer’s yeast from wheat flour. J. Biochem. 82, 753–767.

    Article  CAS  PubMed  Google Scholar 

  • Pal, I., Brahmkhatri, V.P., Bera, S., Bhattacharyya, D., Quirishi, Y., Bhunia, A., and Atreya, H.S. 2016. Enhanced stability and activity of an antimicrobial peptide in conjugation with silver nano-particle. J. Colloid Interface Sci. 483, 385–393.

    Article  CAS  PubMed  Google Scholar 

  • Pal, S., Mitra, K., Azmi, S., Ghosh, J.K., and Chakraborty, T.K. 2011. Towards the synthesis of sugar amino acid containing antimicrobial noncytotoxic CAP conjugates with gold nanoparticles and a mechanistic study of cell disruption. Org. Biomol. Chem. 9, 4806–4810.

    Article  CAS  PubMed  Google Scholar 

  • Papo, N. and Shai, Y. 2005. Host defense peptides as new weapons in cancer treatment. Cell. Mol. Life Sci. 62, 784–790.

    Article  CAS  PubMed  Google Scholar 

  • Park, C.B. Kim, H.S., and Kim, S.C. 1998. Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Biophys. Res. Commun. 244, 253–257.

    Article  CAS  PubMed  Google Scholar 

  • Phoenix, D., Dennison, S., and Harris, F. 2013. Antimicrobial Peptides: Their History, Evolution, and Functional Promiscuity. In Phoenix, D.A., Dennison, S.R., and Harris, F. (eds.), Antimicrobial Peptides, pp. 1–37. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.

    Chapter  Google Scholar 

  • Piras, A.M., Maisetta, G., Sandreschi, S., Gazzarri, M., Bartoli, C., Grassi, L., Esin, S., Chiellini, F., and Batoni, G. 2015. Chitosan nanoparticles loaded with the antimicrobial peptide temporin B exert a long-term antibacterial activity in vitro against clinical isolates of Staphylococcus epidermidis. Front. Microbiol. 6, 372.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pirri, G., Giuliani, A., Nicoletto, S.F., Pizzuto, L., and Rinaldi, A.C. 2009. Lipopeptides as anti-infectives: a practical perspective. Cent. Eur. J. Biol. 4, 258–273.

    CAS  Google Scholar 

  • Pirtskhalava, M., Gabrielian, A., Cruz, P., Griggs, H.L., Squires, R.B., Hurt, D.E., Grigolava, M., Chubinidze, M., Gogoladze, G., Vishnepolsky, B., et al. 2016. DBAASP v.2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res. 44, D1104–1112.

    Article  CAS  PubMed  Google Scholar 

  • Porciatti, E., Milenković, M., Gaggelli, E., Valensin, G., Kozlowski, H., Kamysz, W., and Valensin, D. 2010. Structural characterization and antimicrobial activity of the Zn(II) complex with P113 (Demegen), a derivative of histatin 5. Inorg. Chem. 49, 8690–8698.

    Article  CAS  PubMed  Google Scholar 

  • Rai, A., Pinto, S., Velho, T.R., Ferreira, A.F., Moita, C., Trivedi, U., Evangelista, M., Comune, M., Rumbaugh, K.P., Simões, P.N., et al. 2016. One-step synthesis of high-density peptide-conjugated gold nanoparticles with antimicrobial efficacy in a systemic infection model. Biomaterials 85, 99–110.

    Article  CAS  PubMed  Google Scholar 

  • Rammelkamp, C.H. and Weinstein, L. 1942. Toxic effects of tyrothricin, gramicidin and tyrocidine. J. Infect. Dis. 71, 166–173.

    Article  CAS  Google Scholar 

  • Riedl, S., Zweytick, D., and Lohner, K. 2011. Membrane-active host defense peptides-challenges and perspectives for the development of novel anticancer drugs. Chem. Phys. Lipids 164, 766–781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ron-Doitch, S., Sawodny, B., Kühbacher, A., David, M.M.N., Samanta, A., Phopase, J., Burger-Kentischer, A., Griffith, M., Golomb, G., and Rupp, S. 2016. Reduced cytotoxicity and enhanced bio-activity of cationic antimicrobial peptides liposomes in cell cultures and 3D epidermis model against HSV. J. Control. Release 229, 163–171.

    Article  CAS  PubMed  Google Scholar 

  • Saravolatz, L.D., Pawlak, J., Johnson, L., Bonilla, H., Saravolatz, L.D.2nd, Fakih, M.G., Fugelli, A., and Olsen, W.M. 2012. In vitro activities of LTX-109, a synthetic antimicrobial peptide, against methicillin-resistant, vancomycin-intermediate, vancomycin-resistant, daptomycin-nonsusceptible, and linezolid-nonsusceptible Staphylococcus aureus. Antimicrob. Agents Chemother. 56, 4478–4482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saravolatz, L.D., Stein, G.E., and Johnson, L.B. 2009. Telavancin: a novel lipoglycopeptide. Clin. Infect. Dis. 49, 1908–1914.

    Article  CAS  PubMed  Google Scholar 

  • Sass, V., Schneider, T., Wilmes, M., Körner, C., Tossi, A., Novikova, N., Shamova, O., and Sahl, H.G. 2010. Human β-defensin 3 inhibits cell wall biosynthesis in Staphylococci. Infect. Immun. 78, 2793–2800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder, B.O., Wu, Z., Nuding, S., Groscurth, S., Marcinowski, M., Beisner, J., Buchner, J., Schaller, M., Stange, E.F., and Wehkamp, J. 2011. Reduction of disulphide bonds unmasks potent antimicrobial activity of human β-defensin 1. Nature 469, 419–423.

    Article  CAS  PubMed  Google Scholar 

  • Scott, M.G., Dullaghan, E., Mookherjee, N., Glavas, N., Waldbrook, M., Thompson, A., Wang, A., Lee, K., Doria, S., Hamill, P., et al. 2007. An anti-infective peptide that selectively modulates the innate immune response. Nat. Biotechnol. 25, 465–472.

    Article  CAS  PubMed  Google Scholar 

  • Selsted, M.E., Brown, D.M., DeLange, R.J., and Lehrer, R.I. 1983. Primary structures of MCP-1 and MCP-2, natural peptide antibiotics of rabbit lung macrophages. J. Biol. Chem. 258, 14485–14489.

    Article  CAS  PubMed  Google Scholar 

  • Selsted, M.E., Szklarek, D., and Lehrer, R.I. 1984. Purification and antibacterial activity of antimicrobial peptides of rabbit granulocytes. Infect. Immun. 45, 150–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selsted, M.E., Tang, Y.Q., Morris, W.L., McGuire, P.A., Novotny, M.J., Smith, W., Henschen, A.H., and Cullor, J.S. 1993. Purification, primary structures, and antibacterial activities of β-defensins, a new family of antimicrobial peptides from bovine neutrophils. J. Biol. Chem. 268, 6641–6648.

    Article  CAS  PubMed  Google Scholar 

  • Shai, Y. 2002. Mode of action of membrane active antimicrobial peptides. Biopolymers 66, 236–248.

    Article  CAS  PubMed  Google Scholar 

  • Shaker, B., Yu, M.S., Lee, J., Lee, Y., Jung, C., and Na, D. 2020. User guide for the discovery of potential drugs via protein structure prediction and ligand docking simulation. J. Microbiol. 58, 235–244.

    Article  CAS  PubMed  Google Scholar 

  • Sørensen, O.E., Follin, P., Johnsen, A.H., Calafat, J., Tjabringa, G.S., Hiemstra, P.S., and Borregaard, N. 2001. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97, 3951–3959.

    Article  PubMed  Google Scholar 

  • Soundrarajan, N., Cho, H., Ahn, B., Choi, M., Thong, L.M., Choi, H., Cha, S.Y., Kim, J.H., Park, C.K., Seo, K., et al. 2016. Green fluorescent protein as a scaffold for high efficiency production of functional bacteriotoxic proteins in Escherichia coli. Sci. Rep. 6, 20661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner, H., Hultmark, D., Engström, Å., Bennich, H., and Boman, H.G. 1981. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292, 246–248.

    Article  CAS  PubMed  Google Scholar 

  • Sur, A., Pradhan, B., Banerjee, A., and Aich, P. 2015. Immune activation efficacy of indolicidin is enhanced upon conjugation with carbon nanotubes and gold nanoparticles. PLoS ONE 10, e0123905.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahashi, D., Shukla, S.K., Prakash, O., and Zhang, G. 2010. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie 92, 1236–1241.

    Article  CAS  PubMed  Google Scholar 

  • Tang, M. and Hong, M. 2009. Structure and mechanism of β-hairpin antimicrobial peptides in lipid bilayers from solid-state NMR spectroscopy. Mol. Biosyst. 5, 317–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, Y.Q., Yuan, J., Osapay, G., Osapay, K., Tran, D., Miller, C.J., Ouellette, A.J., and Selsted, M.E. 1999. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated a-defensins. Science 286, 498–502.

    Article  CAS  PubMed  Google Scholar 

  • Townsend, D.M., He, L., Hutchens, S., Garrett, T.E., Pazoles, C.J., and Tew, K.D. 2008. NOV-002, a glutathione disulfide mimetic, as a modulator of cellular redox balance. Cancer Res. 68, 2870–2877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trotti, A., Garden, A., Warde, P., Symonds, P., Langer, C., Redman, R., Pajak, T.F., Fleming, T.R., Henke, M., Bourhis, J., et al. 2004. A multinational, randomized phase III trial of iseganan HCl oral solution for reducing the severity of oral mucositis in patients receiving radiotherapy for head-and-neck malignancy. Int. J. Radiat. Oncol. Biol. Phys. 58, 674–681.

    Article  CAS  PubMed  Google Scholar 

  • Tucker, A.T., Leonard, S.P., DuBois, C.D., Knauf, G.A., Cunningham, A.L., Wilke, C.O., Trent, M.S., and Davies, B.W. 2018. Discovery of next-generation antimicrobials through bacterial self-screening of surface-displayed peptide libraries. Cell 172, 618–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuerk, C. and Gold, L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510.

    Article  CAS  PubMed  Google Scholar 

  • Usmani, S.S., Bedi, G., Samuel, J.S., Singh, S., Kalra, S., Kumar, P., Ahuja, A.A., Sharma, M., Gautam, A., and Raghava, G.P.S. 2017. THPdb: Database of FDA-approved peptide and protein therapeutics. PLoS ONE 12, e0181748.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Epps, H.L. 2006. René Dubos: unearthing antibiotics. J. Exp. Med. 203, 259.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vincent, J.L., Marshall, J.C., Dellinger, R.P., Simonson, S.G., Guntupalli, K., Levy, M.M., Singer, M., and Malik, R. 2015. Talactoferrin in severe sepsis: Results from the phase II/III oral tAlactoferrin in severe sepsis trial. Crit. Care Med. 43, 1832–1838.

    Article  CAS  PubMed  Google Scholar 

  • Wang, G. 2010. Antimicrobial peptides: Discovery, design, and novel therapeutic strategies. CABI Publishing, Wallingford, Oxfordshire, the United Kingdom.

    Book  Google Scholar 

  • Wang, F., Qin, L., Pace, C.J., Wong, P., Malonis, R., and Gao, J. 2012. Solubilized gramicidin A as potential systemic antibiotics. Chembiochem 13, 51–55.

    Article  PubMed  CAS  Google Scholar 

  • Wiegand, I., Hilpert, K., and Hancock, R.E.W. 2008. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3, 163–175.

    Article  CAS  PubMed  Google Scholar 

  • Wimley, W.C. 2010. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem. Biol. 5, 905–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wimley, W.C., Selsted, M.E., and White, S.H. 1994. Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores. Protein Sci. 3, 1362–1373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Z., Hoover, D.M., Yang, D., Boulègue, C., Santamaria, F., Oppenheim, J.J., Lubkowski, J., and Lu, W. 2003. Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human β-defensin 3. Proc. Natl. Acad. Sci. USA 100, 8880–8885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Q., Patočka, J., and Kuča, K. 2018. Insect antimicrobial peptides, a mini review. Toxins 10, 461.

    Article  CAS  PubMed Central  Google Scholar 

  • Xhindoli, D., Pacor, S., Benincasa, M., Scocchi, M., Gennaro, R., and Tossi, A. 2016. The human cathelicidin LL-37 — A pore-forming antibacterial peptide and host-cell modulator. Biochim. Biophys. Acta 1858, 546–566.

    Article  CAS  PubMed  Google Scholar 

  • Yeom, J.H., Lee, B., Kim, D., Lee, J., Kim, S., Bae, J., Park, Y., and Lee, K. 2016. Gold nanoparticle-DNA aptamer conjugate-assisted delivery of antimicrobial peptide effectively eliminates intracellular Salmonella enterica serovar Typhimurium. Biomaterials 104, 43–51.

    Article  CAS  PubMed  Google Scholar 

  • Zhanel, G.G., Calic, D., Schweizer, F., Zelenitsky, S., Adam, H., Lagacé-Wiens, P.R.S., Rubinstein, E., Gin, A.S., Hoban, D.J., and Karlowsky, J.A. 2010. New Lipoglycopeptides. Drugs 70, 859–886.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L. and Falla, T.J. 2006. Antimicrobial peptides: therapeutic potential. Expert Opin. Pharmacother. 7, 653–663.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Chung-Ang University Graduate Research Scholarship in 2017 and the National Research Foundation of Korea (NRF) (2018R1D1A1B07050434 to J.-H.Y.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Hyun Yeom, Minju Joo or Kangseok Lee.

Additional information

Conflict of Interest

We have no conflicts of interest to report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, M., Park, J., Yeom, JH. et al. Rediscovery of antimicrobial peptides as therapeutic agents. J Microbiol. 59, 113–123 (2021). https://doi.org/10.1007/s12275-021-0649-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-0649-z

Keywords

Navigation