Skip to main content

Advertisement

Log in

Peptide Therapeutics Versus Superbugs: Highlight on Current Research and Advancements

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Antibiotics have saved several millions of lives, but its persistent use of antibiotics in the treatment of various infections, whether bacterial, fungal, viral or parasitic has lead to the development of antibiotic resistance. The rapid emergence of antibiotic resistant strains poses a serious challenge to existing antimicrobial therapies. Due to the increase in drug-resistant pathogens and failure of antibiotics the urgent need for the discovery of novel antimicrobials has been continuously emphasized in the global forum. Here we review about antimicrobial peptides (AMPs), their structural insights and recent developments. We had summarized the major classes, mechanism of action and biophysical parameters that modulate therapeutic potency of AMPs. Also, we had briefed the challenges involved in developing therapeutic peptides and the global market potential for peptide therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Centers for Disease Control and Prevention, US Department of Health and Human Services, Atlanta, GA, 2015

Fig. 2

Source: Antimicrobial Peptide Database—UNMC, (http://aps.unmc.edu/AP/main.php)

Fig. 3

Adapted from Jirku et al. (2015). Antimicrobial peptides in human sepsis

Fig. 4

Source: THPdb database (http://crdd.osdd.net/raghava/thpdb/roa.php)

Similar content being viewed by others

References

  • Aboye TL, Strömstedt AA, Gunasekera S, Bruhn JG, El-Seedi H, Rosengren KJ, Göransson U (2015) A cactus-derived toxin-like cystine knot peptide with selective antimicrobial activity. Chembiochem 16(7):1068–1077

    Article  CAS  PubMed  Google Scholar 

  • Afacan JN, Yeung TYA, Pena MO, Hancock EWR (2012) Therapeutic potential of host defense peptides in antibiotic-resistant infections. Curr Pharm Des 18(6):807–819

    Article  CAS  PubMed  Google Scholar 

  • AlKhatib Z, Lagedroste M, Fey I, Kleinschrodt D, Abts A, Smits SH (2014) Lantibiotic immunity: inhibition of nisin mediated pore formation by NisI. PLoS ONE 9(7):e102246

    Article  PubMed  PubMed Central  Google Scholar 

  • Antibiotic/Antimicrobial Resistance (2017) Centers for Disease Control and Prevention. https://www.cdc.gov/drugresistance/biggest_threats.html. Accessed 09 Oct 2017

  • Aoki W, Ueda M (2013) Characterization of antimicrobial peptides toward the development of novel antibiotics. Pharmaceuticals 6(8):1055–1081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arenas I, Villegas E, Walls O, Barrios H, Rodríguez R, Corzo G (2016) Antimicrobial activity and stability of short and long based arachnid synthetic peptides in the presence of commercial antibiotics. Molecules 21(2):225

    Article  CAS  Google Scholar 

  • Bahar AA, Ren D (2013a) Antimicrobial peptides. Pharmaceuticals 6(12):1543–1575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bahar AA, Ren D (2013b) Antimicrobial peptides. Pharmaceuticals 6(12):1543–1575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bechinger B, Gorr SU (2016) Antimicrobial peptides mechanisms of action and resistance. J Dent Res 96:254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boman HG, Agerberth B, Boman A (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 61(7):2978–2984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bommarius B, Jenssen H, Elliott M, Kindrachuk J, Pasupuleti M, Gieren H et al (2010) Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli. Peptides 31(11):1957–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Ke T, Liu R, Yu J, Dong C, Cheng M, Liu S (2015) Identification of a novel proline-rich antimicrobial peptide from Brassica napus. PLoS ONE 10(9):e0137414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi H, Rangarajan N, Weisshaar JC (2016) Lights, camera, action! Antimicrobial peptide mechanisms imaged in space and time. Trends Microbiol 24(2):111–122

    Article  CAS  PubMed  Google Scholar 

  • Čujová S, Bednárová L, Slaninová J, Straka J, Čeřovský V (2014) Interaction of a novel antimicrobial peptide isolated from the venom of solitary bee Colletes daviesanus with phospholipid vesicles and Escherichia coli cells. J Pept Sci 20(11):885–895

    Article  PubMed  CAS  Google Scholar 

  • Dalzini A, Bergamini C, Biondi B, De Zotti M, Panighel G, Fato R, Maniero AL (2016) The rational search for selective anticancer derivatives of the peptide trichogin GA IV: a multi-technique biophysical approach. Sci Rep 6:2400

    Article  CAS  Google Scholar 

  • de Oliveira Dias R, Franco OL (2015) Cysteine-stabilized αβ defensins: from a common fold to antibacterial activity. Peptides 72:64–72

    Article  CAS  Google Scholar 

  • Deslouches B, Phadke SM, Lazarevic V, Cascio M, Islam K, Montelaro RC, Mietzner TA (2005) De novo generation of cationic antimicrobial peptides: influence of length and tryptophan substitution on antimicrobial activity. Antimicrob Agents Chemother 49(1):316–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Destoumieux D, Bulet P, Loew D, Van Dorsselaer A, Rodriguez J, Bachère E (1997) Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J Biol Chem 272(45):28398–28406

    Article  CAS  PubMed  Google Scholar 

  • Duong DT, Singh S, Bagheri M, Verma NK, Schmidtchen A, Malmsten M (2016) Pronounced peptide selectivity for melanoma through tryptophan end-tagging. Sci Rep 6:24952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dziuba B, Dziuba M (2014) New milk protein-derived peptides with potential antimicrobial activity: an approach based on bioinformatic studies. Int J Mol Sci 15(8):14531–14545

    Article  PubMed  PubMed Central  Google Scholar 

  • Ebbensgaard A, Mordhorst H, Overgaard MT, Nielsen CG, Aarestrup FM, Hansen EB (2015) Comparative evaluation of the antimicrobial activity of different antimicrobial peptides against a range of pathogenic bacteria. PLoS ONE 10(12):e0144611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ebenhan T, Gheysens O, Kruger HG, Zeevaart JR, Sathekge MM (2014) Antimicrobial peptides: their role as infection-selective tracers for molecular imaging. BioMed Res Int 2014:867381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edwards IA, Elliott AG, Kavanagh AM, Zuegg J, Blaskovich MA, Cooper MA (2016) Contribution of amphipathicity and hydrophobicity to the antimicrobial activity and cytotoxicity of β-hairpin peptides. ACS Infect Dis 2(6):442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott KA, Kenny C, Madan J (2017) A global treaty to reduce antimicrobial use in livestock. https://www.cgdev.org/sites/default/files/global-treaty-reduce-antimicrobial-use-livestock.pdf. Accessed 10 Oct 2017

  • Elofsson U, Fureby A, Gerde P (2015) Pulmonary delivery of antimicrobial peptides. ONdrugDelivery 57:4–7

    Google Scholar 

  • Farkas A, Maróti G, Kereszt A, Kondorosi É (2017) Comparative analysis of the bacterial membrane disruption effect of two natural plant antimicrobial peptides. Front Microbiol 8:51

    PubMed  PubMed Central  Google Scholar 

  • Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20(1):122–128

    Article  CAS  PubMed  Google Scholar 

  • Friedrich CL, Rozek A, Patrzykat A, Hancock RE (2001) Structure and mechanism of action of an indolicidin peptide derivative with improved activity against gram-positive bacteria. J Biol Chem 276(26):24015–24022

    Article  CAS  PubMed  Google Scholar 

  • Gentilucci L, De Marco R, Cerisoli L (2010) Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr Pharm Des 16(28):3185–3203

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S (2016) Peptide therapeutics market: forecast and analysis 2015–2025. Chim OGGI-Chem Today 34(2):V–VII

    Google Scholar 

  • Hamoen LW, Wenzel M (2017) Antimicrobial peptides-interaction with membrane lipids and proteins. Front Cell Dev Biol 5:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Henderson JM, Waring AJ, Separovic F, Lee KYC (2016) Antimicrobial peptides share a common interaction driven by membrane line tension reduction. Biophys J 111(10):2176–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirst DJ, Lee TH, Kulkarni K, Wilce JA, Aguilar MI (2016) The impact of cell-penetrating peptides on membrane bilayer structure during binding and insertion. Biochim Biophys Acta 1858(8):1841–1849

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DT, Liu J, Lee RB, Lee RE (2016) New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv Drug Deliv Rev 102:55–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollmann A, Martínez M, Noguera ME, Augusto MT, Disalvo A, Santos NC et al (2016) Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide–membrane interactions of three related antimicrobial peptides. Colloids Surf B 141:528–536

    Article  CAS  Google Scholar 

  • Huang Y, He L, Li G, Zhai N, Jiang H, Chen Y (2014) Role of helicity of α-helical antimicrobial peptides to improve specificity. Protein Cell 5(8):631–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchings CJ, Koglin M, Olson WC, Marshall FH (2017) Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nat Rev Drug Discov 16:1–24

    Article  CAS  Google Scholar 

  • Imjongjirak C, Amphaiphan P, Charoensapsri W, Amparyup P (2017) Characterization and antimicrobial evaluation of SpPR-AMP1, a proline-rich antimicrobial peptide from the mud crab Scylla paramamosain. Dev Comp Immunol 74:209–216

    Article  CAS  PubMed  Google Scholar 

  • Ingham AB, Moore RJ (2007) Recombinant production of antimicrobial peptides in heterologous microbial systems. Biotechnol Appl Biochem 47(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Izadpanah M, Khalili H (2015) Antibiotic regimens for treatment of infections due to multidrug-resistant Gram-negative pathogens: an evidence-based literature review. J Res Pharm Pract 4(3):105–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenssen H, Aspmo SI (2008) Serum stability of peptides. Peptide-Based Drug Des 498:177–186

    Article  CAS  Google Scholar 

  • Jirku M, Bumba L, Bednarova L, Kubala M, Sulc M, Franek M, Bousova K (2015) Characterization of the part of N-terminal PIP2 binding site of the TRPM1 channel. Biophys Chem 207:135–142

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa M, Shiraishi T, Yamamoto S, Kutomi R, Ohkoshi Y, Sato T, Yokota SI (2017) Novel antimicrobial activities of a peptide derived from a Japanese soybean fermented food, Natto, against Streptococcus pneumoniae and Bacillus subtilis group strains. AMB Expr 7(1):127

    Article  CAS  Google Scholar 

  • Koh JJ, Lin H, Caroline V, Chew YS, Pang LM, Aung TT, Tan AL (2015) N-lipidated peptide dimers: effective antibacterial agents against gram-negative pathogens through lipopolysaccharide permeabilization. J Med Chem 58(16):6533–6548

    Article  CAS  PubMed  Google Scholar 

  • Kovalainen M, Mönkäre J, Riikonen J, Pesonen U, Vlasova M, Salonen J, Herzig KH (2015) Novel delivery systems for improving the clinical use of peptides. Pharmacol Rev 67(3):541–561

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Prakash S, Gupta K, Dongre A, Balaram P, Balaram H (2016) Unexpected functional implication of a stable succinimide in the structural stability of Methanocaldococcus jannaschii glutaminase. Nat Commun 7:12798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le CF, Yusof MYM, Hassan H, Sekaran SD (2015) In vitro properties of designed antimicrobial peptides that exhibit potent antipneumococcal activity and produces synergism in combination with penicillin. Sci Rep 5:9761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le CF, Gudimella R, Razali R, Manikam R, Sekaran SD (2016) Transcriptome analysis of Streptococcus pneumoniae treated with the designed antimicrobial peptides, DM3. Sci Rep 6:26828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Lee DG (2015) Antimicrobial peptides (AMPs) with dual mechanisms: membrane disruption and apoptosis. J Microbiol Biotechnol 25(6):759–764

    Article  CAS  PubMed  Google Scholar 

  • Lee TH, Hirst DJ, Aguilar MI (2015) New insights into the molecular mechanisms of biomembrane structural changes and interactions by optical biosensor technology. Biochim Biophys Acta 1848(9):1868–1885

    Article  CAS  PubMed  Google Scholar 

  • Lee BS, Huang JS, Jayathilaka LP, Lee J, Gupta S (2016) Antibody production with synthetic peptides. Methods Mol Biol 1474:25–47

    Article  CAS  PubMed  Google Scholar 

  • Leontiadou H, Mark AE, Marrink SJ (2006) Antimicrobial peptides in action. J Am Chem Soc 128(37):12156–12161

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Ducasse R, Zirah S, Blond A, Goulard C, Lescop E, Rebuffat S (2015) Characterization of sviceucin from Streptomyces provides insight into enzyme exchangeability and disulfide bond formation in lasso peptides. ACS Chem Biol 10(11):2641–2649

    Article  CAS  PubMed  Google Scholar 

  • Li J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW (2017) Membrane active antimicrobial peptides: translating mechanistic insights to design. Front Neurosci 11:73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Limoli DH, Rockel AB, Host KM, Jha A, Kopp BT, Hollis T, Wozniak DJ (2014) Cationic antimicrobial peptides promote microbial mutagenesis and pathoadaptation in chronic infections. PLoS Pathog 10(4):e1004083

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu WP, Chen YH, Ming X, Kong Y (2015) Design and synthesis of a novel cationic peptide with potent and broad-spectrum antimicrobial activity. BioMed Res Int. https://doi.org/10.1155/2015/578764

    Google Scholar 

  • Liu X, Cao R, Wang S, Jia J, Fei H (2016) Amphipathicity determines different cytotoxic mechanisms of lysine-or arginine-rich cationic hydrophobic peptides in cancer cells. J Med Chem 59(11):5238–5247

    Article  CAS  PubMed  Google Scholar 

  • Liu CJ, Wu L, Meng E, Zhang DY (2017) The development of high-throughput identification and heterologous expression of valuable peptides/proteins. Curr Proteom 14(1):13–23

    Article  CAS  Google Scholar 

  • Lomakin IB, Gagnon MG, Steitz TA (2015) Antimicrobial peptides targeting bacterial ribosome. Oncotarget 6(22):18744

    Article  PubMed  PubMed Central  Google Scholar 

  • Long SW, Linson SE, Saavedra MO, Cantu C, Davis JJ, Brettin T, Olsen RJ (2017) Whole-Genome sequencing of human clinical Klebsiella pneumoniae isolates reveals misidentification and misunderstandings of Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae. mSphere 2(4):e00290–e00217

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyu Y, Yang Y, Lyu X, Dong N, Shan A (2016) Antimicrobial activity, improved cell selectivity and mode of action of short PMAP-36-derived peptides against bacteria and Candida. Sci Rep 6:27285

    Article  CAS  Google Scholar 

  • Manabe T, Kawasaki K (2017) D-form KLKLLLLLKLK-NH2 peptide exerts higher antimicrobial properties than its L-form counterpart via an association with bacterial cell wall components. Sci Rep 7:43384

    Article  PubMed  PubMed Central  Google Scholar 

  • Mardirossian M, Grzela R, Giglione C, Meinnel T, Gennaro R, Mergaert P, Scocchi M (2014) The host antimicrobial peptide Bac7 1–35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem Biol 21(12):1639–1647

    Article  CAS  PubMed  Google Scholar 

  • Martin L, Van Meegern A, Doemming S, Schuerholz T (2015) Antimicrobial peptides in human sepsis. Front Immunol 6:404

    PubMed  PubMed Central  Google Scholar 

  • Mathur D, Prakash S, Anand P, Kaur H, Agrawal P, Mehta A, Raghava GP (2016) PEPlife: a repository of the half-life of peptides. Sci Rep 6:36617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyasaki KT, Lehrer RI (1998) β-sheet antibiotic peptides as potential dental therapeutics. Int J Antimicrob Agents 9(4):269–280

    Article  CAS  PubMed  Google Scholar 

  • Montero-Alejo V, Corzo G, Porro-Suardíaz J, Pardo-Ruiz Z, Perera E, Rodríguez-Viera L, Tytgat J (2017) Panusin represents a new family of β-defensin-like peptides in invertebrates Dev Comp Immunol 67:310–321

    Article  CAS  PubMed  Google Scholar 

  • Muheem A, Shakeel F, Jahangir MA, Anwar M, Mallick N, Jain GK, Ahmad FJ (2016) A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm J 24(4):413–428

    Article  PubMed  Google Scholar 

  • Müller A, Wenzel M, Strahl H, Grein F, Saaki TN, Kohl B, Hamoen LW (2016) Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proc Natl Acad Sci 113(45):E7077–E7086

    Article  PubMed Central  CAS  Google Scholar 

  • Nam BH, Moon JY, Park EH, Kim YO, Kim DG, Kong HJ et al (2014) Antimicrobial activity of peptides derived from olive flounder lipopolysaccharide binding protein/bactericidal permeability-increasing protein (LBP/BPI). Mar Drugs 12(10):5240–5257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayana JL, Chen JY (2015) Antimicrobial peptides: possible anti-infective agents. Peptides 72:88–94

    Article  CAS  Google Scholar 

  • Nešuta O, Buděšínský M, Hadravová R, Monincová L, Humpoličková J, Čeřovský V (2017) How proteases from Enterococcus faecalis contribute to its resistance to short α-helical antimicrobial peptides. Pathog Dis 75(7):ftx091

    Article  Google Scholar 

  • New antimicrobial peptide kills strains resistant to existing antibiotics (2016) http://www.kurzweilai.net/new-antimicrobial-peptide-kills-strains-resistant-to-existing-antibiotics. Accessed on 10 October 2017

  • Ngambenjawong C, Gustafson HH, Pineda JM, Kacherovsky NA, Cieslewicz M, Pun SH (2016) Serum stability and affinity optimization of an M2 macrophage-targeting peptide (M2pep). Theranostics 6(9):1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordström R, Malmsten M (2017) Delivery systems for antimicrobial peptides. Adv Colloid Interface Sci 242:17

    Article  PubMed  CAS  Google Scholar 

  • Pasupuleti M (2009) Structural, functional and evolutionary studies of antimicrobial peptides, vol 2009, no 85. Department of Clinical Sciences, Lund University, Lund

    Google Scholar 

  • Patel S, Akhtar N (2017) Antimicrobial peptides (AMPs): the quintessential ‘offense and defense’ molecules are more than antimicrobials. Biomed Pharmacother 95:1276–1283

    Article  CAS  PubMed  Google Scholar 

  • Peng SY, You RI, Lai MJ, Lin NT, Chen LK, Chang KC (2017) Highly potent antimicrobial modified peptides derived from the Acinetobacter baumannii phage endolysin LysAB2. Sci Rep 7:11477

    Article  PubMed  PubMed Central  Google Scholar 

  • Petit VW, Rolland JL, Blond A, Cazevieille C, Djediat C, Peduzzi J, Rebuffat S (2016) A hemocyanin-derived antimicrobial peptide from the penaeid shrimp adopts an alpha-helical structure that specifically permeabilizes fungal membranes. Biochim Biophys Acta 1860(3):557–568

    Article  CAS  PubMed  Google Scholar 

  • Polanco C (2013) Selective antibacterial peptides: a review on their polarity: microbial pathogens and strategies for combating them: science, technology and education. Formatex Research Center, Badajoz

    Google Scholar 

  • Premdjee B, Payne RJ (2017) Synthesis of proteins by native chemical ligation–desulfurization strategies. In: D’Andrea LD, Romanelli A (eds) Chemical ligation: tools for biomolecule synthesis and modification. Wiley, Hoboken

    Google Scholar 

  • Pushpanathan M, Gunasekaran P, Rajendhran J (2013) Antimicrobial peptides: versatile biological properties. Int J Pept 15:42

    Google Scholar 

  • Rashid R, Veleba M, Kline KA (2016) Focal targeting of the bacterial envelope by antimicrobial peptides. Front Cell Dev Biol 4:55

    Article  PubMed  PubMed Central  Google Scholar 

  • Riduan SN, Yuan Y, Zhou F, Leong J, Su H, Zhang Y (2016) Ultrafast killing and self-gelling antimicrobial imidazolium oligomers. Small 12(14):1928–1934

    Article  CAS  PubMed  Google Scholar 

  • Sang P, Shi Y, Teng P, Cao A, Xu H, Li Q, Cai J (2017) Antimicrobial AApeptides. Curr Topics Med Chem 17(11):1266–1279

    Article  CAS  Google Scholar 

  • Sani MA, Lee TH, Aguilar MI, Separovic F (2015) Proline-15 creates an amphipathic wedge in maculatin 1.1 peptides that drives lipid membrane disruption. Biochim Biophys Acta 1848(10):2277–2289

    Article  CAS  PubMed  Google Scholar 

  • Schmitt P, Rosa RD, Destoumieux-Garzón D (2016a) An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes. Biochim Biophys Acta 1858(5):958–970

    Article  CAS  PubMed  Google Scholar 

  • Schmitt P, Rosa RD, Destoumieux-Garzón D (2016b) An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes. Biochim Biophys Acta 1858(5):958–970

    Article  CAS  PubMed  Google Scholar 

  • Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, Neve S (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science 328(5982):1168–1172

    Article  CAS  PubMed  Google Scholar 

  • Scocchi M, Mardirossian M, Runti G, Benincasa M (2016) Non-membrane permeabilizing modes of action of antimicrobial peptides on bacteria. Curr Topics Med Chem 16(1):76–88

    Article  CAS  Google Scholar 

  • Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ (2012) Antimicrobial peptides for therapeutic applications: a review. Molecules 17(10):12276–12286

    Article  CAS  PubMed  Google Scholar 

  • Shahmiri M, Enciso M, Mechler A (2015) Controls and constrains of the membrane disrupting action of Aurein 1.2. Sci Rep 5:16378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma H, Nagaraj R (2015) Human β-Defensin 4 with non-native disulfide bridges exhibit antimicrobial activity. PLoS ONE 10(3):e0119525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen W, Chen Y, Yao H, Du C, Luan N, Yan X (2016) A novel defensin-like antimicrobial peptide from the skin secretions of the tree frog, Theloderma kwangsiensis. Gene 576(1):136–140

    Article  CAS  PubMed  Google Scholar 

  • Silva ON, De La Fuente-núñez C, Haney EF, Fensterseifer ICM, Ribeiro SM, Porto WF et al (2016) An anti-infective synthetic peptide with dual antimicrobial and immunomodulatory activities. Sci Rep. https://doi.org/10.1038/srep35465

    Google Scholar 

  • Sitaram N, Nagaraj R (1999) Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim Biophys Acta 1462(1):29–54

    Article  CAS  PubMed  Google Scholar 

  • Tantong S, Pringsulaka O, Weerawanich K, Meeprasert A, Rungrotmongkol T, Sarnthima R, Sirikantaramas S (2016) Two novel antimicrobial defensins from rice identified by gene coexpression network analyses. Peptides 84:7–16

    Article  CAS  PubMed  Google Scholar 

  • Thota CK, Yadav N, Chauhan VS (2016) A novel highly stable and injectable hydrogel based on a conformationally restricted ultrashort peptide. Sci Rep 6:31167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Y, Li J, Zhao H, Zeng X, Wang D, Liu Q, Li Z (2016) Stapling of unprotected helical peptides via photo-induced intramolecular thiol–yne hydrothiolation. Chem Sci 7(5):3325–3330

    Article  CAS  Google Scholar 

  • Triana-Vidal LE, Castro MS, Pires Júnior OR, Álvares ACM, de Freitas SM, Fontes W et al (2017) Dendropsophin 1, a novel antimicrobial peptide from the skin secretion of the endemic Colombian frog Dendropsophus columbianus. Nat Prod Res. https://doi.org/10.1080/14786419.2017.1346646

    PubMed  Google Scholar 

  • Tseng TS, Wang SH, Chang TW, Wei HM, Wang YJ, Tsai KC, Chen C (2016) Sarkosyl-induced helical structure of an antimicrobial peptide gw-q6 plays an essential role in the binding of surface receptor OprI in Pseudomonas aeruginosa. PLoS ONE 11(10):e0164597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Harten RM, Willems RJ, Martin NI, Hendrickx AP (2017) Multidrug-resistant enterococcal infections: new compounds, novel antimicrobial therapies? Trends Microbiol 25:467

    Article  PubMed  CAS  Google Scholar 

  • Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther 40(4):277–283

    Google Scholar 

  • Verdon J, Coutos-Thevenot P, Rodier MH, Landon C, Depayras S, Noel C, Berjeaud JM (2016) Armadillidin H, a glycine-rich peptide from the terrestrial crustacean Armadillidium vulgare, displays an unexpected wide antimicrobial spectrum with membranolytic activity. Front Microbiol 7:1484

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang G (2012) Post-translational modifications of natural antimicrobial peptides and strategies for peptide engineering. Curr Biotechnol 1(1):72–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Mishra B, Lau K, Lushnikova T, Golla R, Wang X (2015) Antimicrobial peptides in 2014. Pharmaceuticals 8(1):123–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinstock MT, Francis JN, Redman JS, Kay MS (2012) Protease-resistant peptide design—empowering nature’s fragile warriors against HIV. Pept Sci 98(5):431–442

    Article  CAS  Google Scholar 

  • Widenbring R, Frenning G, Malmsten M (2014) Chain and pore-blocking effects on matrix degradation in protein-loaded microgels. Biomacromol 15(10):3671–3678

    Article  CAS  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55(1):27–55

    Article  CAS  PubMed  Google Scholar 

  • Yin LM, Edwards MA, Li J, Yip CM, Deber CM (2012) Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. J Biol Chem 287(10):7738–7745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Lu Y, Qiao X, Wei L, Fu T, Cai S, Wang Y (2015) Novel cathelicidins from pigeon highlights evolutionary convergence in avain cathelicidins and functions in modulation of innate immunity. Sci Rep. https://doi.org/10.1038/srep11082

    Google Scholar 

  • Yu Q, Zhang Z, Sun J, Xia Y, Du Q, Liang D (2017) Effects of chain length and hydrophobicity/charge ratio of AMP on its antimicrobial activity. Sci China Chem 60(3):385–395

    Article  CAS  Google Scholar 

  • Zhao CX, Dwyer MD, Yu AL, Wu Y, Fang S, Middelberg AP (2015) A simple and low-cost platform technology for producing pexiganan antimicrobial peptide in E. coli. Biotechnol Bioeng 112(5):957–964

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Zhang M, Qiu S, Wang J, Peng J, Zhao P, Yan W (2016) Antimicrobial activity and stability of the d-amino acid substituted derivatives of antimicrobial peptide polybia-MPI. AMB Express 6(1):122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhong J, Wang W, Yang X, Yan X, Liu R (2013) A novel cysteine-rich antimicrobial peptide from the mucus of the snail of Achatina fulica. Peptides 39:1–5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank SERB and UGC, Government of India, for financial support through major project. A special thanks to Prof. Dr. K. Ruckmani, Head and Director, Department of Pharmaceutical Technology, Centre for. Excellence in Nanobio Translational REsearch. (CENTRE), University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli-620024, Tamil Nadu, India for her constant support.

Funding

This study was supported by Science and Engineering research board, Department of Science and Technology under the scheme of Empowerment and Equity Opportunities for Excellence in Science. Sanction Order No: SB/EMEQ-034/2014 dated 06.07.2015. University Grants Commission, National Fellowship for SC, Award Letter No.: F1-17.1/2017-18/RGNF-2017-18-SC-TAM-45554. Dated: 16/08/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnanand Nagarajan.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarajan, K., Marimuthu, S.K., Palanisamy, S. et al. Peptide Therapeutics Versus Superbugs: Highlight on Current Research and Advancements. Int J Pept Res Ther 24, 19–33 (2018). https://doi.org/10.1007/s10989-017-9650-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-017-9650-0

Keywords

Navigation