Skip to main content
Log in

iTRAQ-facilitated proteomic analysis of Bacillus cereus via degradation of malachite green

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The wide use of malachite green (MG) as a dye has caused substantial concern owing to its toxicity. Bacillus cereus can against the toxic effect of MG and efficiently decolourise it. However, detailed information regarding its underlying adaptation and degradation mechanisms based on proteomic data is scarce. In this study, the isobaric tags for relative and absolute quantitation (iTRAQ)-facilitated quantitative method was applied to analyse the molecular mechanisms by which B. cereus degrades MG. Based on this analysis, 209 upregulated proteins and 198 downregulated proteins were identified with a false discovery rate of 1% or less during MG biodegradation. Gene ontology and KEGG analysis determined that the differentially expressed proteins were enriched in metabolic processes, catalytic activity, antioxidant activity, and responses to stimuli. Furthermore, real-time qPCR was utilised to further confirm the regulated proteins involved in benzoate degradation. The proteins BCE_4076 (Acetyl-CoA acetyltransferase), BCE_5143 (Acetyl-CoA acetyltransferase), BCE_5144 (3-hydroxyacyl-CoA dehydrogenase), BCE_4651 (Enoyl-CoA hydratase), and BCE_5474 (3-hydroxyacyl-CoA dehydrogenase) involved in the benzoate degradation pathway may play an important role in the biodegradation of MG by B. cereus. The results of this study not only provide a comprehensive view of proteomic changes in B. cereus upon MG loading but also shed light on the mechanism underlying MG biodegradation by B. cereus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adav, S.S., Ng, C.S., and Sze, S.K. 2011. iTRAQ-based quantitative proteomic analysis of Thermobifida fusca reveals metabolic pathways of cellulose utilization. J. Proteomics 74, 2112–2122.

    Article  CAS  PubMed  Google Scholar 

  • Amera, G.M., Khan, R.J., Pathak, A., Jha, R.K., Muthukumaran, J., and Singh, A.K. 2020. Computer aided ligand based screening for identification of promising molecules against enzymes involved in peptidoglycan biosynthetic pathway from Acinetobacter baumannii. Microb. Pathog. 147, 104205.

    Article  CAS  PubMed  Google Scholar 

  • Cha, C.J., Doerge, D.R., and Cerniglia, C.E. 2001. Biotransformation of malachite green by the fungus Cunninghamella elegans. Appl. Environ. Microbiol. 67, 4358–4360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, J.S. and Kuo, T.S. 2000. Kinetics of bacterial decolorization of azo dye with Escherichia coli NO3. Bioresour. Technol. 75, 107–111.

    Article  CAS  Google Scholar 

  • Chen, C.Y., Kuo, J.T., Cheng, C.Y., Huang, Y.T., Ho, I.H., and Chung, Y.C. 2009. Biological decolorization of dye solution containing malachite green by Pandoraea pulmonicola YC32 using a batch and continuous system. J. Hazard. Mater. 172, 1439–1445.

    Article  CAS  PubMed  Google Scholar 

  • Chen, K.C., Wu, J.Y., Liou, D.J., and Hwang, S.C.J. 2003. Decolorization of the textile dyes by newly isolated bacterial strains. J. Biotechnol. 101, 57–68.

    Article  CAS  PubMed  Google Scholar 

  • Culp, S.J. and Beland, F.A. 1996. Malachite green: A toxicological review. J. Am. Coll. Toxicol. 15, 219–238.

    Article  Google Scholar 

  • Daneshvar, N., Ayazloo, M., Khataee, A.R., and Pourhassan, M. 2007a. Biological decolorization of dye solution containing malachite green by microalgae Cosmarium sp. Bioresour. Technol. 98, 1176–1182.

    Article  CAS  PubMed  Google Scholar 

  • Daneshvar, N., Khataee, A.R., Rasoulifard, M.H., and Pourhassan, M. 2007b. Biodegradation of dye solution containing malachite green: optimization of effective parameters using taguchi method. J. Hazard. Mater. 143, 214–219.

    Article  CAS  PubMed  Google Scholar 

  • Debnam, P., Glanville, S., and Clark, A.G. 1993. Inhibition of glutathione s-transferases from rat liver by basic triphenylmethane dyes. Biochem. Pharmacol. 45, 1227–1233.

    Article  CAS  PubMed  Google Scholar 

  • Deng, D., Guo, J., Zeng, G., and Sun, G. 2008. Decolorization of anthraquinone, triphenylmethane and azo dyes by a new isolated Bacillus cereus strain DC11. Int. Biodeterior. Biodegradation 62, 263–269.

    Article  CAS  Google Scholar 

  • Du, L.N., Zhao, M., Li, G., Xu, F.C., Chen, W.H., and Zhao, Y.H. 2013. Biodegradation of malachite green by Micrococcus sp. strain BD15: Biodegradation pathway and enzyme analysis. Int. Biodeterior. Biodegradation 78, 108–116.

    Article  CAS  Google Scholar 

  • Fessard, V., Godard, T., Huet, S., Mourot, A., and Poul, J.M. 1999. Mutagenicity of malachite green and leucomalachite green in in vitro tests. J. Appl. Toxicol. 19, 421–430.

    Article  CAS  PubMed  Google Scholar 

  • Ge, P., Ma, C., Wang, S., Gao, L., Li, X., Guo, G., Ma, W., and Yan, Y. 2012. Comparative proteomic analysis of grain development in two spring wheat varieties under drought stress. Anal. Bioanal. Chem. 402, 1297–1313.

    Article  CAS  PubMed  Google Scholar 

  • Gopinathan, R., Kanhere, J., and Banerjee, J. 2015. Effect of malachite green toxicity on non target soil organisms. Chemosphere 120, 637–644.

    Article  CAS  PubMed  Google Scholar 

  • Henderson, A.L., Schmitt, T.C., Heinze, T.M., and Cerniglia, C.E. 1997. Reduction of malachite green to leucomalachite green by intestinal bacteria. Appl. Environ. Microbiol. 63, 4099–4101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, D., Wang, B., Li, X., Peng, W., Zhou, J., Tan, H., Tang, J., Huang, Z., Tan, W., Gan, B., et al. 2017. Proteomic analysis revealed the fruiting-body protein profile of Auricularia polytricha. Curr. Microbiol. 74, 943–951.

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., et al. 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36, D480–D484.

    Article  CAS  PubMed  Google Scholar 

  • Liu, S., Ma, Y., Zheng, Y., Zhao, W., Zhao, X., Luo, T., Zhang, J., and Yang, Z. 2020. Cold-stress response of probiotic Lactobacillus plantarum K25 by iTRAQ proteomic analysis. J. Microbiol. Biotechnol. 30, 187–195.

    Article  CAS  PubMed  Google Scholar 

  • Mattevi, A., de Kok, A., and Perham, R.N. 1992. The pyruvate dehydrogenase multienzyme complex. Curr. Opin. Struct. Biol. 2, 877–887.

    Article  CAS  Google Scholar 

  • Mishra, P., Jain, A., Takabe, T., Tanaka, Y., Negi, M., Singh, N., Jain, N., Mishra, V., Maniraj, R., Krishnamurthy, S.L., et al. 2019. Heterologous expression of serine hydroxymethyltransferase-3 from rice confers tolerance to salinity stress in E. coli and arabidopsis. Front. Plant Sci. 10, 217.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moumeni, O. and Hamdaoui, O. 2012. Intensification of sonochemical degradation of malachite green by Bromide ions. Ultrason. Sonochem. 19, 404–409.

    Article  CAS  PubMed  Google Scholar 

  • Murugesan, K., Yang, I.H., Kim, Y.M., Jeon, J.R., and Chang, Y.S. 2009. Enhanced transformation of malachite green by laccase of Ganoderma lucidum in the presence of natural phenolic compounds. Appl. Microbiol. Biotechnol. 82, 341–350.

    Article  CAS  PubMed  Google Scholar 

  • Musgrave, W.B., Yi, H., Kline, D., Cameron, J.C., Wignes, J., Dey, S., Pakrasi, H.B., and Jez, J.M. 2013. Probing the origins of glutathione biosynthesis through biochemical analysis of glutamate-cysteine ligase and glutathione synthetase from a model photosynthetic prokaryote. Biochem. J. 450, 63–72.

    Article  CAS  PubMed  Google Scholar 

  • Ranish, J.A., Yi, E.C., Leslie, D.M., Purvine, S.O., Goodlett, D.R., Eng, J., and Aebersold, R. 2003. The study of macromolecular complexes by quantitative proteomics. Nat. Genet. 33, 349–355.

    Article  CAS  PubMed  Google Scholar 

  • Rasko, D.A., Ravel, J., Økstad, O.A., Helgason, E., Cer, R.Z., Jiang, L., Shores, K.A., Fouts, D.E., Tourasse, N.J., Angiuoli, S.V., et al. 2004. The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res. 32, 977–988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawat, D., Mishra, V., and Sharma, R.S. 2016. Detoxification of azo dyes in the context of environmental processes. Chemosphere 155, 591–605.

    Article  CAS  PubMed  Google Scholar 

  • Reiter, L., Kolstø, A.B., and Piehler, A.P. 2011. Reference genes for quantitative, reverse-transcription PCR in Bacillus cereus group strains throughout the bacterial life cycle. J. Microbiol. Methods 86, 210–217.

    Article  CAS  PubMed  Google Scholar 

  • Saha, S., Wang, J.M., and Pal, A. 2012. Nano silver impregnation on commercial TiO2 and a comparative photocatalytic account to degrade malachite green. Sep. Purif. Technol. 89, 147–159.

    Article  CAS  Google Scholar 

  • Srivastava, S., Sinha, R., and Roy, D. 2004. Toxicological effects of malachite green. Aquat. Toxicol. 66, 319–329.

    Article  CAS  PubMed  Google Scholar 

  • Sun, S., Xie, S., Chen, H., Cheng, Y., Shi, Y., Qin, X., Dai, S.Y., Zhang, X., and Yuan, J.S. 2016. Genomic and molecular mechanisms for efficient biodegradation of aromatic dye. J. Hazard. Mater. 302, 286–295.

    Article  CAS  PubMed  Google Scholar 

  • Szewczyk, R., Soboń, A., Słaba, M., and Dlugoński, J. 2015. Mechanism study of alachlor biodegradation by Paecilomyces marquandii with proteomic and metabolomic methods. J. Hazard. Mater. 291, 52–64.

    Article  CAS  PubMed  Google Scholar 

  • Verma, P. and Madamwar, D. 2003. Decolourization of synthetic dyes by a newly isolated strain of Serratia marcescens. World J. Microbiol. Biotechnol. 19, 615–618.

    Article  CAS  Google Scholar 

  • Wang, B., Chen, Z., Meng, X., Li, M., Yang, X., and Zhang, C. 2017. iTRAQ quantitative proteomic study in patients with thoracic ossification of the ligamentum flavum. Biochem. Biophys. Res. Commun. 487, 834–839.

    Article  CAS  PubMed  Google Scholar 

  • Wanyonyi, W.C., Onyari, J.M., Shiundu, P.M., and Mulaa, F.J. 2017. Biodegradation and detoxification of malachite green dye using novel enzymes from Bacillus cereus strain KM201428: kinetic and metabolite analysis. Energy Procedia 119, 38–51.

    Article  CAS  Google Scholar 

  • Xie, H., Yang, D.H., Yao, H., Bai, G., Zhang, Y.H., and Xiao, B.G. 2016. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum) in response to drought stress. Biochem. Biophys. Res. Commun. 469, 768–775.

    Article  CAS  PubMed  Google Scholar 

  • Yang, X., Zhang, Z., Gu, T., Dong, M., Peng, Q., Bai, L., and Li, Y. 2016. Data for iTRAQ-based quantitative proteomics analysis of different biotypes in Echinochloa crus-galli with multi-herbicide treatment. Data Brief 9, 741–745.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yatome, C., Yamada, S., Ogawa, T., and Matsui, M. 1993. Degradation of crystal violet by Nocardia corallina. Appl. Microbiol. Biotechnol. 38, 565–569.

    Article  CAS  Google Scholar 

  • Yi, W., Yang, K., Ye, J., Long, Y., Ke, J., and Ou, H. 2016. Triphenyltin degradation and proteomic response by an engineered Escherichia coli expressing cytochrome P450 enzyme. Ecotoxicol. Environ. Saf. 137, 29–34.

    Article  PubMed  CAS  Google Scholar 

  • Yildirim, N.C., Tanyol, M., Yildirim, N., Serdar, O., and Tatar, S. 2018. Biochemical responses of Gammarus pulex to malachite green solutions decolorized by Coriolus versicolor as a biosorbent under batch adsorption conditions optimized with response surface methodology. Ecotoxicol. Environ. Saf. 156, 41–47.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Z. and Wen, X. 2005. Screening and identification of yeasts for decolorizing synthetic dyes in industrial wastewater. Int. Biodeterior. Biodegradation 56, 109–114.

    Article  CAS  Google Scholar 

  • Zhang, Q., Xie, X., Liu, Y., Zheng, X., Wang, Y., Cong, J., Yu, C., Liu, N., Sand, W., and Liu, J. 2020. Co-metabolic degradation of refractory dye: a metagenomic and metaproteomic study. Environ. Pollut. 256, 113456.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C., Zhang, S., Diao, H., Zhao, H., Zhu, X., Lu, F., and Lu, Z. 2013. Purification and characterization of a temperature- and pH-stable laccase from the spores of Bacillus vallismortis fmb-103 and its application in the degradation of malachite green. J. Agric. Food Chem. 61, 5468–5473.

    Article  CAS  PubMed  Google Scholar 

  • Zieske, L.R. 2006. A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. J. Exp. Bot. 57, 1501–1508.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the National Key Research and Development Program of China (2018YFD0800403), the National Natural Science Foundation of China (No. 21978287), and the Science and Technology Service Network Initiative Project of the Chinese Academy of Sciences (KFJ-STS-QYZX-112) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhisheng Yu.

Additional information

Conflict of Interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Lu, J., Zheng, J. et al. iTRAQ-facilitated proteomic analysis of Bacillus cereus via degradation of malachite green. J Microbiol. 59, 142–150 (2021). https://doi.org/10.1007/s12275-021-0441-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-0441-0

Keywords

Navigation