Skip to main content
Log in

Dynamics of microbial communities and CO2 and CH4 fluxes in the tundra ecosystems of the changing Arctic

  • Minireview
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Arctic tundra ecosystems are rapidly changing due to the amplified effects of global warming within the northern high latitudes. Warming has the potential to increase the thawing of the permafrost and to change the landscape and its geochemical characteristics, as well as terrestrial biota. It is important to investigate microbial processes and community structures, since soil microorganisms play a significant role in decomposing soil organic carbon in the Arctic tundra. In addition, the feedback from tundra ecosystems to climate change, including the emission of greenhouse gases into the atmosphere, is substantially dependent on the compositional and functional changes in the soil microbiome. This article reviews the current state of knowledge of the soil microbiome and the two most abundant greenhouse gas (CO2 and CH4) emissions, and summarizes permafrost thaw-induced changes in the Arctic tundra. Furthermore, we discuss future directions in microbial ecological research coupled with its link to CO2 and CH4 emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, B.W. and Jones, J.B. 2015. Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Glob. Chang. Biol. 21, 4570–4587.

    Article  Google Scholar 

  • Allan, J., Ronholm, J., Mykytczuk, N.C.S., Greer, C.W., Onstott, T.C., and Whyte, L.G. 2014. Methanogen community composition and rates of methane consumption in Canadian High Arctic permafrost soils. Environ. Microbiol. Rep. 6, 136–144.

    Article  CAS  Google Scholar 

  • Bahram, M., Hildebrand, F., Forslund, S.K., Anderson, J.L., Soudzilovskaia, N.A., Bodegom P.M., Bengtsson-Palme, J., Anslan, S., Coelho, L.P., Harend, H., et al. 2018. Structure and function of the global topsoil microbiome. Nature 560, 233–237.

    Article  CAS  PubMed  Google Scholar 

  • Bates, S.T., Berg-Lyons, D., Capraso, J.G., Walters, W.A., Knight, R., and Fierer, N. 2011. Examining the global distribution of dominant archaeal populations in soil. ISME J. 5, 908–917.

    Article  CAS  PubMed  Google Scholar 

  • Bellemain, E., Davey, M.L., Kauserud, H., Epp, L.S., Boessenkool, S., Coissac, E., Geml, J., Edwards, M., Willerslev, E., Gussarova, G., et al. 2013. Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost. Environ. Microbiol. 15, 1176–1189.

    CAS  Google Scholar 

  • Biasi, C., Jokinen, S., Marushchak, M.E., Hämäläinen, K., Trubnikova, T., Oinonen, M., and Martikainen, P.J. 2014. Microbial respiration in Arctic upland and peat soils as a source of atmospheric carbon dioxide. Ecosystems 17, 112–126.

    Article  CAS  Google Scholar 

  • Biasi, C., Rusalimova, O., Meyer, H., Kaiser, C., Wanek, W., Barsukov, P., Junger, H., and Richter, A. 2005. Temperature-dependent shift from labile to recalcitrant carbon sources of Arctic heterotrophs. Rapid Commun. Mass Spectrom. 19, 1401–1408.

    Article  CAS  PubMed  Google Scholar 

  • Billings, W.D., Peterson, K.M., Shaver, G.R., and Trent, A.W. 1977. Root growth, respiration, and carbon dioxide evolution in an Arctic tundra soil. Arct. Alp. Res. 9, 129–137.

    Article  CAS  Google Scholar 

  • Blake, L.I., Tveit, A., Øvreås, L., Head, I.M., and Gray, N.D. 2015. Response of methanogens in Arctic sediments to temperature and methanogenic substrate availability. PLoS One 10, e0129733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blazewicz, S.J., Petersen, D.G., Waldrop, M.P., and Firestone, M.K. 2012. Anaerobic oxidation of methane in tropical and boreal soils: ecological significance in terrestrial methane cycling. J. Geophys. Res. Biogeosci. 117, G02033.

    Article  CAS  Google Scholar 

  • Bottos, E.M., Kennedy, D.W., Romero, E.B., Fansler, S.J., Brown, J.M., Bramer, L.M., Chu, R.K., Tfaily, M.M., Jansson, J.K., and Stegen, J.C. 2018. Dispersal limitation and thermodynamic constraints govern spatial structure of permafrost microbial communities. FEMS Microbiol. Ecol. 94, fiy110.

    Article  CAS  Google Scholar 

  • Buckeridge, K.M., Cen, Y.P., Layzell, D.B., and Grogan, P. 2010a. Soil biogeochemistry during the early spring in low arctic mesic tundra and the impacts of deepened snow and enhanced nitrogen availability. Biogeochemistry 99, 127–141.

    Article  CAS  Google Scholar 

  • Buckeridge, K.M., Zufelt, E., Chu, H., and Grogan, P. 2010b. Soil nitrogen cycling rates in low arctic shrub tundra are enhanced by litter feedbacks. Plant Soil 330, 407–421.

    Article  CAS  Google Scholar 

  • Capek, P., Diáková, K., Dickopp, J.E., Bárta, J., Wild, B., Schnecker, J., Alves, R.J.E., Aiglsdorfer, S., Guggenberger, G., Gentsch, N., et al. 2015. The effect of warming on the vulnerability of subducted organic carbon in arctic soils. Soil Biol. Biochem. 90, 19–29.

    Article  CAS  Google Scholar 

  • Chen, L., Liu, L., Mao, C., Qin, S., Wang, J., Liu, F., Blagodatsky, S., Yang, G., Zhang, Q., Zhang, D., et al. 2018. Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency. Nat. Commun. 9, 3951.

    Google Scholar 

  • Christiansen, J.R., Romero, A.J.B., Jørgensen, N.O.G., Glaring, M.A., Jørgensen, C.J., Berg, L.K., and Elberling, B. 2015. Methane fluxes and the functional groups of methanotrophs and methanogens in a young Arctic landscape on Disko Island, West Greenland. Biogeochemistry 122, 15–33.

    Article  CAS  Google Scholar 

  • Chu, H., Fierer, N., Lauber, C.L., Caporaso, J., Knight, R., and Grogan, P. 2010. Soil bacterial diversity in the arctic is not fundamentally different from that found in other biomes. Environ. Microbiol. 12, 2998–3006.

    Article  CAS  PubMed  Google Scholar 

  • Chu, H., Neufeld, J.D., Walker, V.K., and Grogan, P. 2011. The influence of vegetation type on the dominant soil bacteria, archaea, and fungi in a low arctic tundra landscape. Soil Sci. Soc. Am. J. 75, 1756–1765.

    Article  CAS  Google Scholar 

  • Conrad, R. 1999. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol. Ecol. 28, 193–202.

    Article  CAS  Google Scholar 

  • Coolen, M.J.L. and Orsi, W.D. 2015. The transcriptional response of microbial communities in thawing Alaskan permafrost soils. Front. Microbiol. 6, 197.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dedysh, S.N., Kulichevskaya, I.S., Serkebaeva, Y.M., Mityaeva, M.A., Sorokin, V.V., Suzina, N.E., Rijpstra, W.I.C., and Damsté, J.S.S. 2012. Bryocella elongata gen. nov., sp. nov., a member of subdivision 1 of the Acidobacteria isolated from a methanotrophic enrichment culture, and emended description of Edaphobacter aggregans Koch et al. 2008. Int. J. Syst. Evol. Microbiol. 62, 654–664.

    Article  CAS  PubMed  Google Scholar 

  • Deng, J., Gu, Y., Zhang, J., Xue, K., Qin, Y., Yuan, M., Yin, H., He, Z., Wu, L., and Schuur, E.A.G. 2015. Shifts of tundra bacterial and archaeal communities along a permafrost thaw gradient in Alaska. Mol. Ecol. 24, 222–234.

    Article  CAS  PubMed  Google Scholar 

  • Diáková, K., Capek, P., Kohoutová, I., Mpamah, P.A., Bárta, J., Biasi, C., Martikainen, P.J., and Šantrucková, H. 2016. Heterogeneity of carbon loss and its temperature sensitivity in East-European subarctic tundra soils. FEMS Microbiol. Ecol. 92, fiw140.

    Article  CAS  PubMed  Google Scholar 

  • Eckhardt, T., Knoblauch, C., Kutzbach, L., Simpson, G., Abakumov, E., and Pfeiffer, E.M. 2018. Partitioning CO2 net ecosystem exchange fluxes on the microsite scale in the Lena River Delta, Siberia. Biogeosci. Discuss. DOI: https://doi.org/10.5194/bg-2018-311.

    Google Scholar 

  • Ejarque, E. and Abakumov, E. 2016. Stability and biodegradability of organic matter from Arctic soils of Western Siberia: Insights from 13C-NMR spectroscopy and elemental analysis. Solid Earth 7, 153–165.

    Article  Google Scholar 

  • Fey, A. and Conrad, R. 2000. Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil. Appl. Environ. Microbiol. 66, 4790–4797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fierer, N. and Jackson, R.B. 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103, 626–631.

    Article  CAS  Google Scholar 

  • Finger, R.A., Turetsky, M.R., Kielland, K., Ruess, R.W., Mack, M.C., and Euskirchen, E.S. 2016. Effects of permafrost thaw on nitrogen availability and plant-soil interactions in a boreal Alaskan lowland. J. Ecol. 104, 1542–1554.

    Article  Google Scholar 

  • Ganzert, L., Jurgens, G., Münster, U., and Wagner, D. 2007. Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol. Ecol. 59, 476–488.

    CAS  Google Scholar 

  • Gittel, A., Bárta, J., Kohoutová, I., Mikutta, R., Owens, S., Gilbert, J., Schnecker, J., Wild, B., Hannisdal, B., Maerz, J., et al. 2014a. Distinct microbial communities associated with buried soils in the Siberian tundra. ISME J. 8, 841–853.

    Article  CAS  PubMed  Google Scholar 

  • Gittel, A., Bárta, J., Kohoutova, I., Schnecker, J., Wild, B., Capek, P., Kaiser, C., Torsvik, V.L., Richter, A., and Schleper, C. 2014b. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland. Front. Microbiol. 5, 541.

    Article  PubMed  PubMed Central  Google Scholar 

  • Glissman, K., Chin, K.J., Casper, P., and Conrad, R. 2004. Methanogenic pathway and archaeal community structure in the sediment of eutrophic Lake Dagow: effect of temperature. Microb. Ecol. 48, 389–399.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, R.I., Thomson, B.C., James, P., Bell, T., Bailey, M., and Whiteley, A.S. 2011. The bacterial biogeography of British soils. Environ. Microbiol. 13, 1642–1654.

    Article  PubMed  Google Scholar 

  • Haroon, M.F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., and Tyson, G.W. 2013. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570.

    Article  CAS  PubMed  Google Scholar 

  • Heal, O.W. 1999. Looking north: Current issues in Arctic soil ecology. Appl. Soil Ecol. 11, 107–109.

    Article  Google Scholar 

  • Hicks Pries, C.E., Schuur, E.A.G., and Crummer, K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using 13C and 14C. Glob. Chang. Biol. 19, 649–661.

    Article  Google Scholar 

  • Hodkinson, I.D. and Wookey, P. 1999. Functional ecology of soil organisms in tundra ecosystems: Towards the future. Appl. Soil Ecol. 11, 111–126.

    Article  Google Scholar 

  • Høj, L., Olsen, R.A., and Torsvik, V.L. 2005. Archaeal communities in High Arctic wetlands at Spitsbergen, Norway (78°N) as characterized by 16S rRNA gene fingerprinting. FEMS Microbiol. Ecol. 53, 89–101.

    Article  CAS  PubMed  Google Scholar 

  • Høj, L., Olsen, R.A., and Torsvik, V.L. 2008. Effects of temperature on the diversity and community structure of known methanogenic groups and other archaea in high Arctic peat. ISME J. 2, 37.

    Article  CAS  PubMed  Google Scholar 

  • Høj, L., Rusten, M., Haugen, L.E., Olsen, R.A., and Torsvik, V.L. 2006. Effects of water regime on archaeal community composition in Arctic soils. Environ. Microbiol. 8, 984–996.

    Google Scholar 

  • Huang, J., Zhang, X., Zhang, Q., Lin, Y., Hao, M., Luo, Y., Zhao, Z., Yao, Y., Chen, X., Wang, L., et al. 2017. Recently amplified arctic warming has contributed to a continual global warming trend. Nat. Clim. Chang. 7, 875–879.

    Article  Google Scholar 

  • Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J.W., Schuur, E.A.G., Ping, C.L., Schirrmeister, L., Grosse, G., Michaelson, G.J., Koven, C.D., et al. 2014. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosci. 11, 6573–6593.

    Article  Google Scholar 

  • Hultman, J., Waldrop, M.P., Mackelprang, R., David, M.M., Mc-Farland, J., Blazewicz, S.J., Harden, J., Turetsky, M.R., McGuire, A.D., Shah, M.B., et al. 2015. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212.

    Article  CAS  PubMed  Google Scholar 

  • Jansson, J.K. and Tas, N. 2014. The microbial ecology of permafrost. Nat. Rev. Microbiol. 12, 414–425.

    Article  CAS  PubMed  Google Scholar 

  • Johnston, E.R., Rodriguez, R.L.M., Luo, C., Yuan, M.M., Wu, L., He, Z., Schuur, E.A.G., Luo, Y., Tiedje, J.M., Zhou, J., et al. 2016. Metagenomics reveals pervasive bacterial populations and reduced community diversity across the Alaska tundra ecosystem. Front. Microbiol. 7, 579.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jorgenson, M.T., Shur, Y.L., and Pullman, E.R. 2006. Abrupt increase in permafrost degradation in Arctic Alaska. Geophys. Res. Lett. 33, L02503.

    Article  Google Scholar 

  • Kim, H.M., Chae, N., Jung, J.Y., and Lee, Y.K. 2013. Isolation of facultatively anaerobic soil bacteria from Ny-Ålesund, Svalbard. Polar Biol. 36, 787–796.

    Article  Google Scholar 

  • Kim, M., Jung, J.Y., Laffly, D., Kwon, H.Y., and Lee, Y.K. 2017. Shifts in bacterial community structure during succession in a glacier foreland of the High Arctic. FEMS Microbiol. Ecol. 93, fiw213.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H.M., Lee, M.J., Jung, J.Y., Hwang, C.Y., Kim, M., Ro, H.M., Chun, J., and Lee, Y.K. 2016. Vertical distribution of bacterial community is associated with the degree of soil organic matter decomposition in the active layer of moist acidic tundra. J. Microbiol. 54, 713–723.

    Article  CAS  PubMed  Google Scholar 

  • Kirtman, B., Power, S.B., Adedoyin, J.A., Boer, G.J., Bojariu, R., Camilloni, F.J., Doblas-Reyes, A.M., Kimoto, M., Meehl, G.A., Prather, M., et al. 2013. Near-term climate change: Projections and predictability, pp. 953–1028. In Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, USA.

    Google Scholar 

  • Krivushin, K.V., Shcherbakova, V.A., Petrovskaya, L.E., and Rivkina, E.M. 2010. Methanobacterium veterum sp. nov., from ancient Siberian permafrost. Int. J. Syst. Evol. Microbiol. 60, 455–459.

    Article  CAS  PubMed  Google Scholar 

  • Kutzbach, L., Wagner, D., and Pfeiffer, E.M. 2004. Effect of microrilief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia. Biogeochemistry 69, 341–362.

    Article  CAS  Google Scholar 

  • Kwon, M.J., Beulig, F., Ilie, I., Wildner, M., Küsel, K., Merbold, L., Mahecha, M.D., Zimov, N., Zimov, S.A., Heimann, M., et al. 2017. Plants, microorganisms and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic floodplain. Glob. Chang. Biol. 23, 2396–2412.

    Article  Google Scholar 

  • Kwon, M.J., Heimann, M., Kolle, O., Luus, K.A., Schuur, E.A.G., Zimov, N., Zimov, S.A., and Goeckede, M. 2016. Long-term drainage reduces CO2 uptake and increases CO2 emission on a Siberian floodplain due to shifts in vegetation community and soil thermal characteristics. Biogeosci. 13, 4219–4235.

    Article  CAS  Google Scholar 

  • Larsen, K.S., Grogan, P., Jonasson, S., and Michelsen, A. 2007. Respiration and microbial dynamics in two subarctic ecosystems during winter and spring thaw: effects of increased snow depth. Arct. Antarct. Alp. Res. 39, 268–276.

    Article  Google Scholar 

  • Lau, M.C., Stackhouse, B., Layton, A.C., Chauhan, A., Vishnivetskaya, T., Chourey, K., Ronholm, J., Mykytczuk, N., Bennett, P., and Lamarche-Gagnon, G. 2015. An active atmospheric methane sink in high Arctic mineral cryosols. ISME J. 9, 1880–1891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauber, C.L., Hamady, M., Knight, R., and Fierer, N. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, H., Schuur, E.G., Vogel, J.G., Lavoie, M., Bhadra, D., and Staudhammer, C.L. 2011. A spatially explicit analysis to extrapolate carbon fluxes in upland tundra where permafrost is thawing. Glob. Chang. Biol. 17, 1379–1393.

    Article  Google Scholar 

  • Liebner, S., Ganzert, L., Kiss, A., Yang, S., Wagner, D., and Svenning, M.M. 2015. Shifts in methanogenic community composition and methane fluxes along the degradation of discontinuous permafrost. Front. Microbiol. 6, 356.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liebner, S. and Wagner, D. 2007. Abundance, distribution and potential activity of methane oxidizing bacteria in permafrost soils from the Lena Delta, Siberia. Environ. Microbiol. 9, 107–117.

    Article  CAS  PubMed  Google Scholar 

  • Liljedahl, A.K., Boike, J., Daanen, R.P., Fedorov, A.N., Frost, G.V., Grosse, G., Hinzman, L.D., Iijma, Y., Jorgenson, J.C., Matveyeva, N., et al. 2016. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. GNat. eosci. 9, 312–318.

    CAS  Google Scholar 

  • Lipson, D.A., Haggerty, J.M., Srinivas, A., Raab, T.K., Sathe, S., and Dinsdale, E.A. 2013. Metagenomic insights into anaerobic metabolism along an Arctic peat soil profile. PLoS One 8, e64659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackelprang, R., Burkert, A., Haw, M., Mahendrarajah, T., Conaway, C.H., Douglas, T.A., and Waldrop, M.P. 2017. Microbial survival strategies in ancient permafrost: Insights from metagenomics. ISME J. 11, 2305–2318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackelprang, R., Waldrop, M.P., DeAngelis, K.M., David, M.M., Chavarria, K.L., Blazewicz, S.J., Rubin, E.M., and Jansson, J.K. 2011. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Cruz, K., Leewis, M.C., Herriott, I.C., Sepulveda-Jauregui, A., Anthony, K.W., Thalasso, F., and Leigh, M.B. 2017. Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments. Sci. Total Environ. 607, 23–31.

    Article  CAS  PubMed  Google Scholar 

  • McCalley, C.K., Woodcroft, B.J., Hodgkins, S.B., Wehr, R.A., Kim, E.H., Mondav, R., Crill, P.M., Chanton, J.P., Rich, V.I., Tyson, G.W., et al. 2014. Methane dynamics regulated by microbial community response to permafrost thaw. Nature 514, 478–481.

    Article  CAS  PubMed  Google Scholar 

  • McGuire, A.D., Melillo, J.M., Kicklighter, D.W., Pan, Y., Xiao, X., Helfrich, J., Moore, B., Vorosmarty, C.J., and Schloss, A.L. 1997. Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration. Global Biogeochem. Cycles 11, 173–189.

    Article  CAS  Google Scholar 

  • Mondav, R., McCalley, C.K., Hodgkins, S.B., Frolking, S., Saleska, S.R., Rich, V.I., Chanton, J.P., and Crill, P.M. 2017. Microbial network, phylogenetic diversity and community membership in the active layer across a permafrost thaw gradient. Environ. Microbiol. 19, 3201–3218.

    Article  CAS  PubMed  Google Scholar 

  • Mondav, R., Woodcroft, B.J., Kim, E.H., McCalley, C.K., Hodgkins, S.B., Crill, P.M., Chanton, J., Hurst, G.B., VerBerkmoes, N.C., and Saleska, S.R. 2014. Discovery of a novel methanogen prevalent in thawing permafrost. Nat. Commun. 5, 3212.

    Article  CAS  PubMed  Google Scholar 

  • Monteux, S., Weedon, J.T., Blume-Werry, G., Gavazov, K., Jassey, V.E.J., Johansson, M., Keuper, F., Olid, C., and Dorrepaal, E. 2018. Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration. ISME J. 12, 2129–2141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moosavi, S.C. and Crill, P.M. 1998. CH4 oxidation by tundra wetlands as measured by a selective inhibitor technique. J. Geophys. Res. Atmos. 103, 29093–29106.

    Article  CAS  Google Scholar 

  • Müller, O., Bang-Andreasen, T., White, R.A. 3rd, Elberling, B., Tas, N., Kneafsey, T., Jansson, J.K., and Øvreås, L. 2018. Disentangling the complexity of permafrost soil by using high resolution profiling of microbial community composition, key functions and respiration rates. Environ. Microbiol. 20, 4328–4342.

    Article  CAS  PubMed  Google Scholar 

  • Mykytczuk, N.C.S., Foote, S.J., Omelon, C.R., Southam, G., Greer, C.W., and Whyte, L.G. 2013. Bacterial growth at -15°C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J. 7, 1211–1226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negandhi, K., Laurion, I., Whiticar, M.J., Galand, P.E., Xu, X., and Lovejoy, C. 2013. Small thaw ponds: an unaccounted source of methane in the Canadian High Arctic. PLoS One 8, e78204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemergut, D.R., Costello, E.K., Meyer, A.F., Pescador, M.Y., Weintraub, M.N., and Schmidt, S.K. 2005. Structure and function of alpine and Arctic soil microbial communities. Res. Microbiol. 156, 775–784.

    Article  PubMed  Google Scholar 

  • Neufeld, J.D. and Mohn, W.W. 2005. Unexpectedly high bacterial diversity in Arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags. Appl. Environ. Microbiol. 71, 5710–5718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobrega, S. and Grogan, P. 2008. Landscape and ecosystem-level controls on net carbon dioxide exchange along a natural moisture gradient in Canadian low Arctic tundra. Ecosystems 11, 377–396.

    Article  CAS  Google Scholar 

  • Ping, C.L. 2013. Gelisols: Part I. Cryogenesis and state factors of formation. Soil Horiz. 54, 1–5.

    Article  Google Scholar 

  • Pinnell, L.J., Dunford, E., Ronan, P., Hausner, M., and Neufeld, J.D. 2014. Recovering glycoside hydrolase genes from active tundra cellulolytic bacteria. Can. J. Microbiol. 60, 469–476.

    Article  CAS  PubMed  Google Scholar 

  • Pizano, C., Baron, A.F., Schuur, E.A.G., Crummer, K.G., and Mack, M.C. 2014. Effects of thermo-erosional disturbance on surface soil carbon and nitrogen dynamics in upland arctic tundra. Environ. Res. Lett. 9, 075006.

    Article  CAS  Google Scholar 

  • Popp, T.J., Chanton, J.P., Whiting, G.J., and Grant, N. 2000. Evaluation of methane oxidation in therhizosphere of a Carex dominated fen in northcentral Alberta, Canada. Biogeochemistry 51, 259–281.

    Article  CAS  Google Scholar 

  • Puri, A.W., Schaefer, A.L., Fu, Y., Beck, D.A., Greenberg, E.P., and Lidstrom, M.E. 2017. Quorum sensing in a methane-oxidizing bacterium. J. Bacteriol. 199, e00773–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reay, D., Smith, P., and Van Amstel, A. 2010., Methane sources and the global methane budget, pp. 1–13. In Methane and climate change. Earthscan.

    Google Scholar 

  • Rime, T., Hartmann, M., Brunner, I., Widmer, F., Zeyer, J., and Frey, B. 2015. Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield. Mol. Ecol. 24, 1091–1108.

    Article  CAS  PubMed  Google Scholar 

  • Rochette, P. and Hutchinson, G.L. 2005. Measurement of soil respiration in situ: chamber techniques, pp. 247–286. In Micrometeorology in agricultural systems. American Society of Agronomy, Madison, USA.

    Google Scholar 

  • Rowland, J.C., Jones, C.E., Altmann, G., Bryan, R., Crosby, B.T., Hinzman, L.D., Kane, D.L., Lawrence, D.M., Mancino, A., Marsh, P., et al. 2010. Arctic landscapes in transition: Responses to thawing permafrost. EOS 91, 229–230.

    Article  Google Scholar 

  • Schädel, C., Bader, M.K.F., Schuur, E.A.G., Biasi, C., Bracho, R., Capek, P., De Baets, S., Diáková, K., Ernakovich, J., Estop-Aragones, C., et al. 2016. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Chang. 6, 950–953.

    Article  CAS  Google Scholar 

  • Schuur, E.A.G., Bockheim, J., Canadell, J.G., Euskirchen, E., Field, C.B., Goryachkin, S.V., Hagemann, S., Kuhry, P., Lafleur, P.M., Lee, H., et al. 2008. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience 58, 701–714.

    Article  Google Scholar 

  • Schuur, E.A.G. and Mack, M.C. 2018. Ecological response to permafrost thaw and consequences for local and global ecosystem services. Annu. Rev. Ecol. Evol. Syst. 49, 279–301.

    Article  Google Scholar 

  • Schuur, E.A., McGuire, A.D., Schadel, C., Grosse, G., Harden, J.W., Hayes, D.J., Hugelius, G., Koven, C.D., Kuhry, P., Lawrence, D.M., et al. 2015. Climate change and the permafrost carbon feedback. Nature 520, 171–179.

    Article  CAS  PubMed  Google Scholar 

  • Segal, A.D. and Sullivan, P.F. 2014. Identifying the sources and uncertainties of ecosystem respiration in Arctic tussock tundra. Biogeochemistry 121, 489–503.

    Article  CAS  Google Scholar 

  • Shaver, G.R., Giblin, A.E., Nadelhoffer, K.J., Thieler, K.K., Downs, M.R., Laundre, J.A., and Rastetter, E.B. 2006. Carbon turnover in Alaskan tundra soils: effects of organic matter quality, temperature, moisture and fertilizer. J. Ecol. 94, 740–753.

    Article  CAS  Google Scholar 

  • Shcherbakova, V., Yoshimura, Y., Ryzhmanova, Y., Taguchi, Y., Segawa, T., Oshurkova, V., and Rivkina, E. 2016. Archaeal communities of Arctic methane-containing permafrost. FEMS Microbiol. Ecol. 92, fiw135.

    Article  CAS  PubMed  Google Scholar 

  • Shi, Y., Xiang, X., Shen, C., Chu, H., Neufeld, J.D., Walker, V.K., and Grogan, P. 2015. Vegetation-associated impacts on arctic tundra bacterial and microeukaryotic communities. Appl. Environ. Microbiol. 81, 492–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, B.K., Bardgett, R.D., Smith, P., and Reay, D.S. 2010. Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779.

    Article  CAS  PubMed  Google Scholar 

  • Singleton, C.M., McCalley, C.K., Woodcroft, B.J., Boyd, J.A., Evans, P.N., Hodgkins, S.B., Chanton, J.P., Frolking, S., Crill, P.M., Saleska, S.R., et al. 2018. Methanotrophy across a natural permafrost thaw environment. ISME J. 12, 2544–2558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, L.C., Sheng, Y., MacDonald, G.M., and Hinzman, L.D. 2005. Disappearing Arctic lakes. Science 308, 1429.

    Article  CAS  PubMed  Google Scholar 

  • Stackhouse, B.T., Vishnivetskaya, T.A., Layton, A., Chauhan, A., Pfiffner, S., Mykytczuk, N.C., Sanders, R., Whyte, L.G., Hedin, L., Saad, N., et al. 2015. Effects of simulated spring thaw of permafrost from mineral cryosol on CO2 emissions and atmospheric CH4 uptake. J. Geophys. Res. Biogeosci. 120, 1764–1784.

    Article  CAS  Google Scholar 

  • Steven, B., Pollard, W.H., Greer, C.W., and Whyte, L.G. 2008. Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. Environ. Microbiol. 10, 3388–3403.

    Article  CAS  PubMed  Google Scholar 

  • Strauss, J., Schirrmeister, L., Mangelsdorf, K., Eichhorn, L., Wetterich, S., and Herzschuh, U. 2015. Organic-matter quality of deep permafrost carbon - a study from Arctic Siberia. Biogeosciences 12, 2227–2245.

    Article  CAS  Google Scholar 

  • Suvanto, S., Le Roux, P.C., and Luoto, M. 2014. Arctic-alpine vegetation biomass is driven by fine-scale abiotic heterogeneity. Geogr. Ann. Ser. A Phys. Geogr. 96, 549–560.

    Google Scholar 

  • Tas, N., Prestat, E., McFarland, J.W., Wickland, K.P., Knight, R., Berhe, A.A., Jorgenson, T., Waldrop, M.P., and Jansson, J.K. 2014. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J. 8, 1904–1919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tas, N., Prestat, E., Wang, S., Wu, Y., Ulrich, C., Kneafsey, T., Tringe, S.G., Torn, M.S., Hubbard, S.S., and Jansson, J.K. 2018. Landscape topography structures the soil microbiome in arctic polygonal tundra. Nat. Commun. 9, 777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timling, I., Walker, D.A., Nusbaum, C., Lennon, N.J., and Taylor, D.L. 2014. Rich and cold: diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic. Mol. Ecol. 23, 3258–3272.

    Article  CAS  PubMed  Google Scholar 

  • Treat, C.C., Wollheim, W.M., Varner, R.K., Grandy, A.S., Talbot, J., and Frolking, S. 2014. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats. Glob. Chang. Biol. 20, 2674–2686.

    Article  CAS  PubMed  Google Scholar 

  • Tripathi, B.M., Kim, M., Kim, Y., Byun, E., Yang, J.W., Ahn, J., and Lee, Y.K. 2018. Variations in bacterial and archaeal communities along depth profiles of Alaskan soil cores. Sci. Rep. 8, 504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi, B.M., Kim, M., Lai-Hoe, A., Shukor, N.A.A., Rahim, R.A., Go, R., and Adams, J.M. 2013. pH dominates variation in tropical soil archaeal diversity and community structure. FEMS Microbiol. Ecol. 86, 303–311.

    Article  CAS  PubMed  Google Scholar 

  • Tuorto, S.J., Darias, P., McGuinness, L.R., Panikov, N., Zhang, T., Häggblom, M.M., and Kerkhof, L.J. 2014. Bacterial genome replication at subzero temperatures in permafrost. ISME J. 8, 139.

    Article  CAS  PubMed  Google Scholar 

  • Tveit, A., Schwacke, R., Svenning, M.M., and Urich, T. 2013. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. ISME J. 7, 299–311.

    Article  CAS  PubMed  Google Scholar 

  • Tveit, A.T., Urich, T., Frenzel, P., and Svenning, M.M. 2015. Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming. Proc. Nat. Acad. Sci. USA 112, E2507–E2516.

    Article  CAS  PubMed  Google Scholar 

  • Vaughn, L.J.S., Conrad, M.E., Bill, M., and Torn, M.S. 2016. Isotopic insights into methane production, oxidation, and emissions in Arctic polygon tundra. Glob. Chang. Biol. 22, 3487–3502.

    Article  PubMed  Google Scholar 

  • Verastegui, Y., Cheng, J., Engel, K., Kolczynski, D., Mortimer, S., Lavigne, J., Montalibet, J., Romantsov, T., Hall, M., McConkey, B.J., et al. 2014. Multisubstrate isotope labeling and metagenomic analysis of active soil bacterial communities. MBio 5, e01157–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vishnivetskaya, T., Kathariou, S., McGrath, J., Gilichinsky, D., and Tiedje, J.M. 2000. Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4, 165–173.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, D., Lipski, A., Embacher, A., and Gattinger, A. 2005. Methane fluxes in permafrost habitats of the Lena Delta: effects of microbila community structure and organci matter quality. Environ. Microbiol. 7, 1582–1592.

    Article  CAS  PubMed  Google Scholar 

  • Walker, D.A., Everett, K.R., Webber, P.J., and Brown, J. 1980. Geobotanical atlas of the prudhoe bay region, Alaska. US Army Corps of Engineers.

    Google Scholar 

  • Wallenstein, M.D., McMahon, S., and Schimel, J. 2007. Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiol. Ecol. 59, 428–435.

    Article  CAS  PubMed  Google Scholar 

  • Walvoord, M.A. and Kurylyk, B.L. 2016. Hydrologic impacts of thawing permafrost–A review. Vadose Zone J. 15, vzj2016.01.0010.

    Article  Google Scholar 

  • Wang, H., Shirong, L., Xiao, Z., Qinggong, M., Xiangzhen, L., Yeming, Y., Jingxin, W., Mianhai, Z., Wei, Z., Xiankai, L., et al. 2018. Nitrogen addition reduces soil bacterial richness, while phosphorus addition alters community composition in an old-growth N-rich tropical forest in southern China. Soil Biol. Biochem. 127, 22–30.

    Article  CAS  Google Scholar 

  • Woodcroft, B.J., Singleton, C.M., Boyd, J.A., Evans, P.N., Emerson, J.B., Zayed, A.A., Hoelzle, R.D., Lamberton, T.O., McCalley, C.K., and Hodgkins, S.B. 2018. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49.

    Article  CAS  PubMed  Google Scholar 

  • Wrona, F.J., Johansson, M., Culp, J.M., Jenkins, A., Mård, J., Myers-Smith, I.H., Prowse, T.D., Vincent, W.F., and Wookey, P.A. 2016. Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime. J. Geophys. Res. Biogeosci. 121, 650–674.

    Article  Google Scholar 

  • Ye, R., Jin, Q., Bohannan, B., Keller, J.K., McAllister, S.A., and Bridgham, S.D. 2012. pH controls over anaerobic carbon mineralization, the efficiency of methane production, and methanogenic pathways in peatlands across an ombrotrophic–minerotrophic gradient. Soil Biol. Biochem. 54, 36–47.

    Article  CAS  Google Scholar 

  • Yergeau, E., Hogues, H., Whyte, L.G., and Greer, C.W. 2010. The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME J. 4, 1206–1214.

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa, K. and Hinzman, L.D. 2003. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near council, Alaska. Permafrost Periglac. 14, 151–160.

    Article  Google Scholar 

  • Zak, D.R. and Kling, G.W. 2006. Microbial community composition and function across an Arctic tundra landscape. Ecology 87, 1659–1670.

    Article  PubMed  Google Scholar 

  • Zhang, C., Stapleton, R.D., Zhou, J., Palumbo, A.V., and Phelps, T.J. 1999. Iron reduction by psychrotrophic enrichment cultures. FEMS Microbiol. Ecol. 30, 367–371.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mincheol Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, M.J., Jung, J.Y., Tripathi, B.M. et al. Dynamics of microbial communities and CO2 and CH4 fluxes in the tundra ecosystems of the changing Arctic. J Microbiol. 57, 325–336 (2019). https://doi.org/10.1007/s12275-019-8661-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-8661-2

Keywords

Navigation