Skip to main content

Impact of Climate Change on Soil Microbes Involved in Biogeochemical Cycling

  • Chapter
  • First Online:
Climate Change and the Microbiome

Part of the book series: Soil Biology ((SOILBIOL,volume 63))

Abstract

Anthropogenic activities have led to the emission of greenhouse gases which have accumulated in the earth’s atmosphere over a period of time. The increased concentration of greenhouse gases has increased earth’s temperature and has changed weather patterns. The enhanced CO2 level, warming effect and changing soil moisture conditions have influenced soil microorganism. The microbial communities present in soil and the interactions taking place in terrestrial environment are extremely diverse and complex. The effect of climate change on soil microbial communities includes changes in microbial community composition, species abundance, diversity, survival and resilience, changes in enzyme production, and changes in interactions of microbes with roots of plants, production and sequestration of atmospheric gases (e.g. CO2, CH4, N2O), utilization of soil nutrients and organic matter, etc. Further, the bidirectional nature of interactions where physical environment influences microorganisms and microorganisms in turn can impact environmental conditions, making it difficult to understand the effect of climate change. These microorganisms are involved in various biological processes associated with biogeochemical cycle. Thus, any change in microbial communities also affects the nutrient cycling through biogeochemical cycles. This chapter focuses on the effect of climate change on soil microorganisms and the impact on various microbial processes associated with carbon and nitrogen cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abatenh E, Gizaw B, Tsegaye Z et al (2018) Microbial function on climate change – a review. Environ Pollut Climate Change 2:1

    Article  Google Scholar 

  • Abbasi MK, MĂ¼ller C (2011) Trace gas fluxes of CO2, CH4 and N2O in a permanent grassland soil exposed to elevated CO2 in the Giessen FACE study. Atmos Chem Phys Discuss 11:4199–4227

    Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Article  PubMed  Google Scholar 

  • Allison SD, Treseder KK (2008) Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob Chang Biol 14:2898–2909

    Article  Google Scholar 

  • Arcand MM, Knight JD, Farrell RE (2013) Estimating belowground nitrogen inputs of pea and canola and their contribution to soil inorganic N pools using 15N labeling. Plant Soil 371:67–80

    Article  CAS  Google Scholar 

  • Arnone JA (1999) Symbiotic N2 fixation in a high alpine grassland: effects of four growing seasons of elevated CO2. Funct Ecol 13:383–387

    Article  Google Scholar 

  • Bai E, Li S, Xu S et al (2013) A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytol 199:441–451

    Article  PubMed  CAS  Google Scholar 

  • Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814

    Article  CAS  PubMed  Google Scholar 

  • Bardgett RD, Caruso T (2020) Soil microbial community responses to climate extremes: resistance, resilience and transitions to alternative states. Philos Trans R Soc B 375:20190112

    Article  CAS  Google Scholar 

  • Barnard R, Leadley PW, Hungate BA (2005a) Global change, nitrification, and denitrification: a review. Glob Biogeochem Cyc 19:1–13

    Article  CAS  Google Scholar 

  • Barnard R, Leadley PW, Lensi R et al (2005b) Plant, soil microbial and soil inorganic nitrogen responses to elevated CO2: a study in microcosms of Holcus lanatus. Acta Oecol 27:171–178

    Article  Google Scholar 

  • Bhatla R, Pant M, Singh D et al (2020) Evaluation of cold wave events over Indo-Gangetic plain in India. J Agrometeorol 22:233–238

    Article  Google Scholar 

  • Björsne AK, RĂ¼tting T, Ambus P (2014) Combined climate factors alleviate changes in gross soil nitrogen dynamics in heathlands. Biogeochemistry 120:191–201

    Article  CAS  Google Scholar 

  • Blankinship JC, Niklaus PA, Hungate BA (2011) A meta-analysis of responses of soil biota to global change. Oecologia 165(3):553–565

    Article  PubMed  Google Scholar 

  • Bowker MA, Mau RL, Maestre FT et al (2011) Functional profiles reveal unique ecological roles of various biological soil crust organisms. Funct Ecol 25:787–795

    Article  Google Scholar 

  • Bradford MA, Davies CA, Frey SA, Maddox TR, Melillo JM, Mohan JE, Reynolds JF, Treseder KK, Wallenstein MD (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11:1316–1327

    Article  PubMed  Google Scholar 

  • Brando P, Macedo M, Silverio D et al (2020) Amazon wildfires: scenes from a foreseeable disaster

    Google Scholar 

  • Buresh RJ, Casselman ME, Patrick WH (1980) Nitrogen fixation in flooded soil systems: a review. Adv Agron 33:149–192

    Article  CAS  Google Scholar 

  • Butterly CR, Armstrong R, Chen D et al (2015) Carbon and nitrogen partitioning of wheat and field pea grown with two nitrogen levels under elevated CO2. Plant Soil 391:367–382

    Article  CAS  Google Scholar 

  • Caldwell MM, Bornman JF, Ballare CL et al (2007) Terrestrial ecosystems increased solar ultraviolet radiation, and interactions with other climate change factors. Photochem Photobiol Sci 6:252–266

    Article  CAS  PubMed  Google Scholar 

  • Cantarel AAM, Bloor JMG, Pommier T, Guillaumaud N, Moirot C, Soussana JF, Poly F (2011) Effects of climate change drivers on nitrous oxide fluxes in an upland temperate grassland. Ecosystems 14:223–233. https://doi.org/10.1007/s10021-010-9405-7

    Article  CAS  Google Scholar 

  • Cao Y, Lu C, Quan Z et al (2016) Elevated O3 decreased N Rhizodeposition of spring wheat and its availability to subsequent buckwheat. Soil Tillage Res 162:18–25

    Article  Google Scholar 

  • Castillo-Monroy AP, Bowker MA, Maestre FT et al (2011) Relationships between biological soil crusts, bacterial diversity and abundance, and ecosystem functioning: insights from a semi-arid Mediterranean environment. J Veg Sci 22:165–174

    Article  Google Scholar 

  • Castro HF, Classen AT, Austin EE et al (2010) Soil microbial community responses to multiple experimental climate change drivers. App Environ Microbiol 76:999–1007

    Article  CAS  Google Scholar 

  • Chen J, Nie Y, Liu W et al (2017a) Ammonia-oxidizing archaea are more resistant than denitrifiers to seasonal precipitation changes in an acidic subtropical forest soil. Front Microbiol 8:1384

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J, Xiao G, Kuzyakev Y et al (2017b) Soil nitrogen transformation responses to seasonal precipitation changes are regulated by changes in functional microbial abundance in a subtropical forest. Biogeosciences 14:2513–2525

    Article  CAS  Google Scholar 

  • Choi DS, Quoreshi AM, Maruyama Y et al (2005) Effect of ectomycorrhizal infection on growth and photosynthetic characteristics of Pinus densiflora seedlings grown under elevated CO2 concentrations. Photosynthetica 43:223–229

    Article  Google Scholar 

  • Classen AT, Sundqvist MK, Henning AJ et al (2015) Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: what lies ahead? Ecosphere 6(8):130. https://doi.org/10.1890/ES15-00217.1

    Article  Google Scholar 

  • Coelho F, Santos A, Coimbra J et al (2013) Interactive effects of global climate change and pollution on marine microbes: the way ahead. Ecol Evolut 3:1808–1818

    Article  Google Scholar 

  • Collins SL, Sinsabaugh RL, Crenshaw C et al (2008) Pulse dynamics and microbial processes in aridland ecosystems. J Ecol 96:413–420

    Article  Google Scholar 

  • Cook N (2019) Cyclones Idai and Kenneth in southeastern Africa: humanitarian and recovery response in brief. Congressional Research Service

    Google Scholar 

  • Cruz-MartĂ­nez K, Rosling A, Zhang Y, Song M, Andersen GL, Banfield JF (2012) Effect of rainfall-induced soil geochemistry dynamics on grassland. Appl Environ Microbiol 78:7587–7595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dalei N (2016) Forest fires in Indian state of Uttarakhand. Eurasia Review

    Google Scholar 

  • Das S, Mangwani M (2015) Ocean acidification and marine microorganisms: responses and consequences. Oceanologia 57:349–361. https://doi.org/10.1016/j.oceano.2015.07.003

    Article  Google Scholar 

  • De Vries FT, Shade A (2013) Controls on soil microbial community stability under climate change. Front Microbiol 4:1–16

    Article  Google Scholar 

  • Delgado-Baquerizo M, Gallardo A, Wallenstein M et al (2013) Vascular plants mediate the effects of aridity and soil properties on ammonia-oxidizing bacteria and archaea. FEMS Microbiol Ecol 85:273–282

    Article  CAS  PubMed  Google Scholar 

  • Diao T, Peng Z, Niu X et al (2020) Changes of soil microbes related with carbon and nitrogen cycling after long-term CO2 enrichment in a typical Chinese maize field. Sustainability (Switzerland) 12

    Google Scholar 

  • Dong H, Jiang H, Yu B et al (2010) Impacts of environmental change and human activity on microbial ecosystems on the Tibetan plateau, NW China. GSA Today 20:4–10

    Article  Google Scholar 

  • Dooley SR, Treseder KK (2012) The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry 109:49–61

    Article  Google Scholar 

  • Drissner D, Blum H, Tscherko D et al (2007) Nine years of enriched CO2 changes the function and structural diversity of soil microorganisms in a grassland. Eur J Soil Sci 58:260–269

    Article  Google Scholar 

  • Eckersten H, Blombäck K, Kätterer T et al (2001) Modelling C, N, water and heat dynamics in winter wheat under climate change in Southern Sweden. Agric Eco Environ 86:221–235

    Article  CAS  Google Scholar 

  • Eldridge DJ, Travers SK, Delgado-Baquerizo M et al (2020) Grazing regulates the spatial heterogeneity of soil microbial communities within ecological networks. Ecosystems 23:932–942

    Article  CAS  Google Scholar 

  • Evans CD, Jones TG, Burden A, Ostle N, Zielinski P, Cooper MDA et al (2012) Acidity controls on dissolved organic carbon mobility in organic soils. Glob Chang Biol 18:3317–3331

    Article  Google Scholar 

  • Frank DC et al (2015) Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob Chang Biol. https://doi.org/10.1111/gcb.12916

  • Fierer N, Craine JM, Mclauchlan K et al (2005) Litter quality and the temperature sensitivity of decomposition. Ecology 86:320–326

    Article  Google Scholar 

  • Freeman C, Ostle NJ, Fenner N et al (2004) A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biol Biochem 36:1663–1667

    Article  CAS  Google Scholar 

  • French S, Levy-Booth D, Samarajeewa KE et al (2009) Elevated temperatures and carbon dioxide concentrations: effects on selected microbial activities in temperate agricultural soils. World J Microbiol Biotechnol 25:1887–1900

    Article  CAS  Google Scholar 

  • Fuchslueger L, Bahn M, Fritz K et al (2014) Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow. New Phytol 201:916–927

    Article  CAS  PubMed  Google Scholar 

  • Gamper H, Peter M, Jansa J et al (2004) Arbuscular mycorrhizal fungi benefit from 7 years of free air CO2 enrichment in well-fertilized grass and legume monocultures. Glob Chang Biol 10:189–199

    Article  Google Scholar 

  • Garcia MO, Templer PH, Sorensen PO et al (2020) Soil microbes trade-off biogeochemical cycling for stress tolerance traits in response to year-round climate change. Front Microbiol 11:616

    Article  PubMed  PubMed Central  Google Scholar 

  • Garrett KA, Dendy SP, Frank E et al (2006) Climate change effects on plant disease: genomes to ecosystems. Annu Rev Phytopathol 44:489–509

    Article  CAS  PubMed  Google Scholar 

  • Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94:2362–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruza G, Rankova E, Razuvaev V et al (1999) Indicators of climate change for the Russian Federation. Clim Chang 42:219–242

    Article  Google Scholar 

  • Gupta S (2018) More than 110 killed by high-intensity dust storm in India. CNN. Retrieved 3 May 2018. Accessed 16 Sept 2020

    Google Scholar 

  • Gupta AK, Nair SS, Ghosh O et al (2014) Bundelkhand drought: retrospective analysis and way ahead. National Institute of Disaster Management. New Delhi, p 148

    Google Scholar 

  • Hartwig UA, Wittmann P, Braun R et al (2002) Arbuscular mycorrhiza infection enhances the growth response of Lolium perenne to elevated atmospheric PCO2. J Exp Bot 53:1207–1213

    Article  CAS  PubMed  Google Scholar 

  • Hoosbeek MR, Lukac M, Dam DV et al (2004) More new carbon in the mineral soil of a poplar plantation under free air carbon enrichment (POPFACE): cause of increased priming effect? Glob Biogeochem Cycles 18:GB1040

    Article  CAS  Google Scholar 

  • Hu HW, Macdonald CA, Trivedi P et al (2016) Effects of climate warming and elevated CO2 on autotrophic nitrification and nitrifiers in dryland ecosystems. Soil Biol Biochem. 92:1–15

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 996

    Google Scholar 

  • Iversen CM (2010) Digging deeper: fine-root responses to rising atmospheric CO2 concentration in forested ecosystems. New Phytol 186:346–357

    Article  PubMed  Google Scholar 

  • Jensen KD, Beier C, Michelsen A et al (2003) Effects of experimental drought on microbial processes in two temperate heathlands at contrasting water conditions. Appl Soil Ecol 24:165–176

    Article  Google Scholar 

  • Jiang L, Shao J, Shi Z et al (2019) Responses of grasslands to experimental warming. In: Ecosystem consequences of soil warming: microbes, vegetation, fauna and soil biogeochemistry. Elsevier, pp 347–384

    Google Scholar 

  • Kandeler E, Mosier AR, Morgan JA, Milchunas DG, King JY, Rudolph S, Tscherko D (2006) Response of soil microbial biomass and enzyme activities to the transient elevation of carbon dioxide in a semi-arid grassland. Soil Biol Biochem 38:2448–2460

    Article  CAS  Google Scholar 

  • Karyono TH, Vale R, Vale B (2019) Sustainable building and built environments to mitigate climate change in the tropics: conceptual and practical approaches. Springer

    Google Scholar 

  • Keiblinger KM, Hall EK, Wanek W et al (2010) The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency. FEMS Microbiol Ecol 73:430–440

    CAS  PubMed  Google Scholar 

  • Kol E, Flint EA (1968) Algae in green ice from the Balleny Islands, Antarctica. NZ J Bot 6(3):249–261. https://doi.org/10.1080/0028825X.1968.10428810

    Article  Google Scholar 

  • Kool D, Dolfing J, Wrage N (2011) Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. Soil Bio Biochem 43:174–178

    Article  CAS  Google Scholar 

  • Krivtsov V, Bezginova T, Salmond R, Liddell K, Garside A, Thompson J et al (2006) Ecological interactions between fungi, other biota and forest litter composition in a unique Scottish woodland. Forestry 79:201–216

    Article  Google Scholar 

  • Kumar A, Tyagi M, Jha P et al (2003) Inactivation of cyanobacterial nitrogenase after exposure to ultraviolet-B radiation. Curr Microbiol 46(5):380–384

    Article  CAS  PubMed  Google Scholar 

  • Lafuente A, Duran J, Delgado-Baquerizo M et al (2020) Biocrusts modulate responses of nitrous oxide and methane soil fluxes to simulated climate change in a Mediterranean dryland. Ecosystems

    Google Scholar 

  • Li S, Bush RT, Maoo R et al (2016) Extreme drought causes distinct water acidification and eutrophication in the lower lakes (lakes Alexandrina and Albert), Australia. J Hydrol. https://doi.org/10.1016/j.jhydrol.2016.11.015

  • Li L, Zheng Z, Wang W et al (2020) Terrestrial N2O emissions and related functional genes under climate change: a global meta-analysis. Glob Chang Bio. 26:931–943

    Article  Google Scholar 

  • Lott FC, Christidis N, Stott PA (2013) Can the 2011 East African drought be attributed to human-induced climate change? Geophys Res Lett 40:1177–1181. https://doi.org/10.1002/grl.50235

    Article  Google Scholar 

  • Maestre FT, Escolar C, Guevara M et al (2013) Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Glob Chang Bio. 19:3835–3847

    Article  Google Scholar 

  • Magill A, Aber G, Berntson G et al (2000) Long-term nitrogen additions and nitrogen saturation in two temperate forests. Ecosystems 3:238–253

    Article  Google Scholar 

  • Mandal A, Neenu S (2012) Impact of climate change on soil biodiversity – a review. Agric Rev 33:283–292

    Google Scholar 

  • Manning W, Tiedemann AV (1995) Climate change: potential effects of increased atmospheric carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant diseases. Environ Pollut 88:219–245

    Article  CAS  PubMed  Google Scholar 

  • McMichael A, Woodruff R, Hales S (2006) Climate change and human health: present and future risks. Lancet 367:859–869

    Article  PubMed  Google Scholar 

  • Meisner A, BĂ¥Ă¥th E, Rousk J (2013) Microbial growth responses upon rewetting soil dried for four days or one year. Soil Biol Biochem 66:188–192

    Article  CAS  Google Scholar 

  • Melillo JM, Butler SM, Johnson JE, Mohan JE, Lux H, Burrows E, Bowles FP, Smith RM, Vario CL, Hill T, Burton AJ, Zhou Y, Tang J (2011) Soil warming, carbon-nitrogen interactions and forest carbon budgets. Proc Natl Acad Sci USA 108:9508–9512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno-JimĂ©nez E, Ochoa-Huesa C, Plaza C et al (2020) Biocrusts buffer against the accumulation of soil metallic nutrients induced by warming and rainfall reduction. Commun Biol 3(1)

    Google Scholar 

  • Mueller RC, Belnap J, Kuske CR (2015) Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid Shrubland. Front Microbiol 6

    Google Scholar 

  • Nardo CD, Cinquegrana A, Papa S, Fuggi A, Fioretto A (2004) Laccase and peroxidase isoenzymes during leaf litter decomposition of Quercus ilex in a Mediterranean ecosystem. Soil Biol Biochem 36:1539–1544

    Article  CAS  Google Scholar 

  • National Hurricane Center and Central Pacific Hurricane center (2020) 2020 Atlantic Hurricane season. Accessed 17 Sept

    Google Scholar 

  • Neary DG, Klopatek CC, DeBano L et al (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manage 122:51–71

    Article  Google Scholar 

  • Nie M, Pendall E, Bell C et al (2014) Soil aggregate size distribution mediates microbial climate change feedbacks. Soil Bio Biochem. 68:357–365. https://doi.org/10.1016/j.soilbio.2013.10.012

    Article  CAS  Google Scholar 

  • Niklaus PA, Kandeler E, Leadley P et al (2001) A link between plant diversity, elevated CO2 and soil nitrate. Oecologia 127:540–548

    Article  PubMed  Google Scholar 

  • Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2 – do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol 162:253–280

    Article  Google Scholar 

  • Pajares S, Bohannan JM (2016) Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest. Soils 7:1–20

    Google Scholar 

  • Paterson E, Hall J, Rattray E et al (1997) Effect of elevated CO2 on rhizosphere carbon flow and soil microbial processes. Glob Chang Biol 3:363–377

    Article  Google Scholar 

  • Pearson R, Phillips S, Loranty M et al (2013) Shifts in Arctic vegetation and associated feedbacks under climate change. Nat Clim Chang 3:673–677

    Article  Google Scholar 

  • Pendall E, Bridgham S, Hanson P et al (2004) Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytol 162:311–322

    Article  Google Scholar 

  • Phillips DA, Fox TC, Six J et al (2006) Root exudation (net efflux of amino acids) may increase rhizodeposition under elevated CO2. Glob Chang Biol 12:561–567

    Article  Google Scholar 

  • Phillips RP, Meier IC, Bernhardt E et al (2009) Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree Physiol 29:1513–1523

    Article  CAS  PubMed  Google Scholar 

  • Phillips RP, Meier IC, Bernhardt E et al (2012) Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecol Lett 15:1042–1049

    Article  PubMed  Google Scholar 

  • Pinay G, Gumiero B, Tabacchi E, Gimenez O, Hefting MM, Burt TP, Black VA, Nilsson C, Iordache V, Bureau F, Vought L, Petts GE, Decamps H (2007) Patterns of denitrification rates in European alluvial soils under various hydrological regimes. 52(2):252–266

    Google Scholar 

  • Rajkumar M, Prasad M, Swaminathan S et al (2013) Climate change driven plant-metal-microbe interactions. Environ Int 53:74–86. https://doi.org/10.1016/j.envint.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  • Rakshit R, Patra AK, Pal D et al (2012) Effect of elevated CO2 and temperature on nitrogen dynamics and microbial activity during wheat (Triticum aestivum L.) growth on a subtropical Inceptisol in India. J Agro Crop Sci 198:452–465

    Article  CAS  Google Scholar 

  • Rengel Z, Marschner P (2005) Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol 168:305–312

    Article  CAS  PubMed  Google Scholar 

  • Robertson GP, Paul EA, Harwood RR (2000) Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289:1922–1925

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig C, Iglesias A, Yan X et al (2001) Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob Chang Hum Heal 2:90–104

    Article  Google Scholar 

  • Russell-Smith J, Yates C, Whitehead P et al (2007) Bushfires ‘down under’: patterns and implications of contemporary Australian landscape burning. Inter J Wildland Fire 16. https://doi.org/10.1071/WF07018

  • RĂ¼tting T, Andresen LC (2015) Nitrogen cycle responses to elevated CO2 depend on ecosystem nutrient status. Nutr Cycl Agroecosyst 101:285–294

    Article  CAS  Google Scholar 

  • Sanaullah M, Blagodatskaya E, Chabbi A, Rumpel C, Kuzyakov Y (2011) Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition. Appl Soil Ecol 48:38–44

    Article  Google Scholar 

  • Sankar PM, Shreedevasena S (2020) Desert locusts (Schistocerca gregaria) – a global threatening transboundary pest for food security. Res Today Spl 2:389–391

    Google Scholar 

  • Schimel JP (2018) Life in dry soils: effects of drought on soil microbial communities and processes. Annu Rev Ecol Evol Syst 49:409–432

    Article  Google Scholar 

  • Schindlbacher A, Rodler A, Kuffner M, Kitzler B, Sessitsch A, Zechmeister-Boltenstern S (2011) Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biol Biochem. 43(7):1417–1425. https://doi.org/10.1016/j.soilbio.2011.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheik CS, Beasley WH, Elshahed MS et al (2011) Effect of warming and drought on grassland microbial communities. ISME J 5:1692–1700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sistla SA, Joshua P, Schimel JP (2013) Seasonal patterns of microbial extracellular enzyme activities in an arctic tundra soil: Identifying direct and indirect effects of long-term summer warming. Soil Biol Biochem 66:119–129

    Article  CAS  Google Scholar 

  • Smucker AJM, Park E, Dorner J (2007) Soil micropore development and contributions to soluble carbon transport within macroaggregates. Vadose Zo J 6:282–290

    Article  CAS  Google Scholar 

  • Srivastava SP, Pandey AC et al (2020) Evaluating the 2018 extreme flood hazard events in Kerala, India. Remote Sens Lett 11:436–445

    Article  Google Scholar 

  • Steinweg JM, Jagadamma S, Joshua Frerichs J, Mayes M (2013) Activation Energy of Extracellular Enzymes in Soils from Different Biomes. PLoS ONE 8(3):e59943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabish SA, Nabil S (2015) Epic tragedy: Jammu & Kashmir floods: a clarion call. Emerg Med (Los Angel) 5:233. https://doi.org/10.4172/2165-7548.1000233

    Article  Google Scholar 

  • The Guardian. https://www.theguardian.com/environment/2020/apr/07/great-barrier-reefs-third-mass-bleaching-in-five-years-the-most-widespread-ever

  • Touceda-GonzĂ¡lez M, Prieto-FernĂ¡ndez Renella G, Giagnoni L et al (2017) Microbial community structure and activity in trace element-contaminated soils phytomanaged by gentle remediation options (GRO). Environ Pollut 231:237–251

    Article  PubMed  CAS  Google Scholar 

  • Wallenstein M, Hall EK (2012) A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry 109:35–47

    Article  Google Scholar 

  • Wan S, Hui D, Wallace L et al (2005) Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Glob Biogeochem Cyc 19:1–13

    Article  CAS  Google Scholar 

  • Wan R, Chen Y, Zheng X et al (2016) Effect of CO2 on microbial denitrification via inhibiting electron transport and consumption. Environ Sci Technol 50:9915–9922

    Article  CAS  PubMed  Google Scholar 

  • Wikipedia contributors. Siachen conflict. Wikipedia, The Free Encyclopedia. Available at: https://en.wikipedia.org/w/index.php?title=Siachen_conflict&oldid=978007208. Accessed 16 Sept 2020

  • Xu Q, Sullivan JO, Wang X et al (2019) Elevated CO2 alters the rhizosphere effect on crop residue decomposition. Plant Soil 436:413–426

    Article  CAS  Google Scholar 

  • Yergeau E, Kowalchuk GA (2008) Responses of Antarctic soil microbial communities and associated functions to temperature and freeze-thaw cycle frequency. Wiley Online Library 10:2223–2235

    Google Scholar 

  • Zak D, Pregitzner K, Burton A et al (2011) Microbial responses to a changing environment: implications for the future functioning of terrestrial ecosystems. Fungal Ecol 4:386–395. https://doi.org/10.1016/j.funeco.2011.04.001

    Article  Google Scholar 

  • Zang H, Yang X, Feng X et al (2015) Rhizodeposition of nitrogen and carbon by Mung bean (Vigna radiata L.) and its contribution to intercropped oats (Avena nuda L.). PLoS One 10(3)

    Google Scholar 

  • Zepp RG, Erickson D, Paul N et al (2007) Interactive effects of solar UV radiation and climate change on biogeochemical cycling. Photochem Photobio Sci 6:286–300

    Article  CAS  Google Scholar 

  • Zhang W, Parker KM, Luo Y et al (2005) Soil microbial responses to experimental warming and clipping in a tallgrass prairie. Glob Chang Biol 11:266–277

    Article  CAS  Google Scholar 

  • Zhang C, Shen J, Sun Y et al (2017) Interactive effects of multiple climate change factors on ammonia oxidizers and denitrifiers in a temperate Steppe. FEMS Microbiol Ecol 93

    Google Scholar 

  • Zheng J, Han S, Ren F et al (2008) Effects of long-term elevated CO2 on N2-fixing, denitrifying and nitrifying enzyme activities in forest soils under Pinus sylvestriformis in Changbai Mountain. J Fores Res 19:283–287

    Article  CAS  Google Scholar 

  • Zibilske LM, Bradford JM (2007) Oxygen effects on carbon, polyphenols, and nitrogen mineralization potential in soil. Soil Sci Soc Am J 71:133–139

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singhal, A., Pandey, S., Kumari, N., Chauhan, D.K., Jha, P.K. (2021). Impact of Climate Change on Soil Microbes Involved in Biogeochemical Cycling. In: Choudhary, D.K., Mishra, A., Varma, A. (eds) Climate Change and the Microbiome. Soil Biology, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-030-76863-8_5

Download citation

Publish with us

Policies and ethics