Rotavirus-mediated alteration of gut microbiota and its correlation with physiological characteristics in neonatal calves


Diarrhea is a fatal disease to neonatal calves, and rotavirus is the main pathogen associated with neonatal calf diarrhea. Although previous studies have reported that the gut microbiota is changed in calves during diarrhea, less is known about whether rotavirus infection alters the structure of the gut microbiota. Here, we characterized fecal microbial communities and identified possible relationships between the gut microbiota profiles and physiological parameters. Five fecal specimens of rotavirus-infected calves from 1 to 30 days after birth and five fecal specimens of age-matched healthy calves were used for the microbial community analysis using the Illumina MiSeq sequencer. Rotavirus infection was associated with reduced rotavirus infection significantly reduced the richness and diversity of the bacterial community. Weighted unique fraction metric analysis exhibited significant differences in community membership and structure between healthy and rotavirus-infected calves. Based on relative abundance analysis and linear discriminant analysis effect size, we found that the representative genera from Lactobacillus, Subdoligranulum, Blautia, and Bacteroides were closely related to healthy calves, while the genera Escherichia and Clostridium were closely affiliated to rotavirus-infected calves. Furthermore, canonical correlation analysis and Pearson correlation coefficient results revealed that the increased relative abundances of Lactobacillus, Subdoligranulum, and Bacteroides were correlated with normal levels of physiological characteristics such as white blood cells, blood urea nitrogen, serum amyloid protein A, and glucose concentration in serum. These results suggest that rotavirus infection alters the structure of the gut microbiota, correlating changes in physiological parameters. This study provides new information on the relationship between gut microbiota and the physiological parameters of rotavirus-mediated diarrheic calves.


  1. Ammar, S.S., Mokhtaria, K., Tahar, B.B., Amar, A.A., Redha, B.A., Yuva, B., Mohamed, H.S., Abdellatif, N., and Laid, B. 2014. Prevalence of rotavirus (GARV) and coronavirus (BCoV) associated with neonatal diarrhea in calves in western Algeria. Asian Pac. J. Trop. Biomed. 4, S318–S322.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cho, Y.I., Kim, W.I., Liu, S., Kinyon, J.M., and Yoon, K.J. 2010. Development of a panel of multiplex real-time polymerase chain reaction assays for simultaneous detection of major agents causing calf diarrhea in feces. J. Vet. Diagn. Invest. 22, 509–517.

    Article  PubMed  Google Scholar 

  3. Cho, Y.I. and Yoon, K.J. 2014. An overview of calf diarrhea - infectious etiology, diagnosis, and intervention. J. Vet. Sci. 15, 1–17.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Edrington, T.S., Dowd, S.E., Farrow, R.F., Hagevoort, G.R., Callaway, T.R., Anderson, R.C., and Nisbet, D.J. 2012. Development of colonic microflora as assessed by pyrosequencing in dairy calves fed waste milk. J. Dairy Sci. 95, 4519–4525.

    Article  CAS  PubMed  Google Scholar 

  5. Gomez, D.E., Arroyo, L.G., Costa, M.C., Viel, L., and Weese, J.S. 2017. Characterization of the fecal bacterial microbiota of healthy and diarrheic dairy calves. J. Vet. Intern. Med. 31, 928–939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gulliksen, S.M., Jor, E., Lie, K.I., Hamnes, I.S., Loken, T., Akerstedt, J., and Osteras, O. 2009. Enteropathogens and risk factors for diarrhea in Norwegian dairy calves. J. Dairy Sci. 92, 5057–5066.

    Article  CAS  PubMed  Google Scholar 

  7. Hur, T.Y., Jung, Y.H., Choe, C.Y., Cho, Y.I., Kang, S.J., Lee, H.J., Ki, K.S., Baek, K.S., and Suh, G.H. 2013. The dairy calf mortality: the causes of calf death during ten years at a large dairy farm in Korea. Korean J. Vet. Res. 53, 103–108.

    Article  Google Scholar 

  8. Izzo, M.M., Kirkland, P.D., Mohler, V.L., Perkins, N.R., Gunn, A.A., and House, J.K. 2011. Prevalence of major enteric pathogens in Australian dairy calves with diarrhoea. Aust. Vet. J. 89, 167–173.

    Article  CAS  PubMed  Google Scholar 

  9. Kapikian, A.Z. and Chanock, R.M. 1996. Rotaviruses, pp. 1657–1708. In Straus, S.E. (ed.), Fields Virology Vol. 2. Lippincott-Raven, Philadelphia, USA.

    Google Scholar 

  10. Klein-Jobstl, D., Schornsteiner, E., Mann, E., Wagner, M., Drillich, M., and Schmitz-Esser, S. 2014. Pyrosequencing reveals diverse fecal microbiota in simmental calves during early development. Front. Microbiol. 5, 622.

    PubMed  PubMed Central  Google Scholar 

  11. Kostic, A.D., Xavier, R.J., and Gevers, D. 2014. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146, 1489–1499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, R.W., Connor, E.E., Li, C., Baldwin Vi, R.L., and Sparks, M.E. 2012. Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools. Environ. Microbiol. 14, 129–139.

    Article  CAS  PubMed  Google Scholar 

  13. Lukas, F., Koppova, I., Kudrna, V., and Kopecny, J. 2007. Postnatal development of bacterial population in the gastrointestinal tract of calves. Folia Microbiol. 52, 99–104.

    Article  CAS  Google Scholar 

  14. Margreiter, M., Ludl, K., Phleps, W., and Kaehler, S.T. 2006. Therapeutic value of a Lactobacillus gasseri and Bifidobacterium longum fixed bacterium combination in acute diarrhea: a randomized, double-blind, controlled clinical trial. Int. J. Clin. Pharmacol. Ther. 44, 207–215.

    Article  CAS  PubMed  Google Scholar 

  15. Millar, H.R., Simpson, J.G., and Stalker, A.L. 1971. An evaluation of the heat precipitation method for plasma fibrinogen estimation. J. Clin. Pathol. 24, 827–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oikonomou, G., Teixeira, A.G., Foditsch, C., Bicalho, M.L., Machado, V.S., and Bicalho, R.C. 2013. Fecal microbial diversity in preweaned dairy calves as described by pyrosequencing of metagenomic 16S rDNA. Associations of Faecalibacterium species with health and growth. PLoS One 8, e63157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Penders, J., Thijs, C., Vink, C., Stelma, F.F., Snijders, B., Kummeling, I., van den Brandt, P.A., and Stobberingh, E.E. 2006. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118, 511–521.

    Article  PubMed  Google Scholar 

  18. Rolhion, N. and Chassaing, B. 2016. When pathogenic bacteria meet the intestinal microbiota. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Singh, P., Teal, T.K., Marsh, T.L., Tiedje, J.M., Mosci, R., Jernigan, K., Zell, A., Newton, D.W., Salimnia, H., Lephart, P., et al. 2015. Intestinal microbial communities associated with acute enteric infections and disease recovery. Microbiome 3, 45.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Uetake, K. 2013. Newborn calf welfare: a review focusing on mortality rates. Animal Sci. J. 84, 101–105.

    Article  Google Scholar 

  21. USDA. 2008. Dairy 2007 Part II: changes in the US dairy cattle industry, 1991–2007. Fort Collins: USDA-APHIS-VS, CEAH, 57–61.

  22. Uyeno, Y., Sekiguchi, Y., and Kamagata, Y. 2010. rRNA-based analysis to monitor succession of faecal bacterial communities in Holstein calves. Lett. Appl. Microbiol. 51, 570–577.

    Article  CAS  PubMed  Google Scholar 

  23. Wotzka, S.Y., Nguyen, B.D., and Hardt, W.D. 2017. Salmonella Typhimurium diarrhea reveals basic principles of enteropathogen infection and disease-promoted DNA exchange. Cell Host Microbe 21, 443–454.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Hak-Jong Choi or Jinho Park.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jang, J., Kim, S., Kwon, M. et al. Rotavirus-mediated alteration of gut microbiota and its correlation with physiological characteristics in neonatal calves. J Microbiol. 57, 113–121 (2019).

Download citation


  • diarrhea
  • rotavirus
  • gut microbiota
  • physiological parameters