Skip to main content
Log in

New perspectives of Lactobacillus plantarum as a probiotic: The gut-heart-brain axis

  • Minireview
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Lactobacillus plantarum is a non-gas-producing lactic acid bacterium that is generally regarded as safe (GRAS) with Qualified Presumption of Safety (QPS) status. Although traditionally used for dairy, meat and vegetable fermentation, L. plantarum is gaining increasing significance as a probiotic. With the newly acclaimed gut-heart-brain axis, strains of L. plantarum have proven to be a valuable species for the development of probiotics, with various beneficial effects on gut health, metabolic disorders and brain health. In this review, the classification and taxonomy, and the relation of these with safety aspects are introduced. Characteristics of L. plantarum to fulfill the criteria as a probiotic are discussed. Emphasis are also given to the beneficial functions of L. plantarum in gut disorders such as inflammatory bowel diseases, metabolic syndromes, dyslipidemia, hypercholesteromia, obesity, and diabetes, and brain health aspects involving psychological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggarwal, B.B. 2003. Signalling pathways of the TNF superfamily: a double-edged sword. Nat. Rev. Immunol. 3, 745–756.

    Article  PubMed  CAS  Google Scholar 

  • Axling, U., Olsson, C., Xu, J., Fernandez, C., Larsson, S., Strom, K., Ahrne, S., Holm, C., Molin, G., and Berger, K. 2012. Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6J mice. Nutr. Metab. (Lond) 9, 105.

    Article  CAS  Google Scholar 

  • Backhed, F., Ding, H., Wang, T., Hooper, L.V., Koh, G.Y., Nagy, A., Semenkovich, C.F., and Gordon, J.I. 2004. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 101, 15718–15723.

    Article  PubMed  CAS  Google Scholar 

  • Bejar, W., Hamden, K., Ben Salah, R., and Chouayekh, H. 2013. Lactobacillus plantarum TN627 significantly reduces complications of alloxan-induced diabetes in rats. Anaerobe 24, 4–11.

    Article  PubMed  CAS  Google Scholar 

  • Belicova, A., Mikulasova, M., and Dusinsky, R. 2013. Probiotic potential and safety properties of Lactobacillus plantarum from Slovak Bryndza cheese. Biomed. Res. Int. 2013, 760298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beutler, B. 2004. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430, 257–263.

    Article  PubMed  CAS  Google Scholar 

  • Booijink, C.C., Zoetendal, E.G., Kleerebezem, M., and de Vos, W.M. 2007. Microbial communities in the human small intestine: coupling diversity to metagenomics. Future Microbiol. 2, 285–295.

    Article  PubMed  CAS  Google Scholar 

  • Bosch, M., Rodriguez, M., Garcia, F., Fernandez, E., Fuentes, M.C., and Cune, J. 2012. Probiotic properties of Lactobacillus plantarum CEC 7315 and CEC 7316 isolated from faeces of healthy children. Lett. Appl. Microbiol. 54, 240–246.

    Article  PubMed  CAS  Google Scholar 

  • Cario, E. 2010. Toll-like receptors in inflammatory bowel diseases: a decade later. Inflamm. Bowel Dis. 16, 1583–1597.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cario, E. and Podolsky, D.K. 2000. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect. Immun. 68, 7010–7017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cebeci, A. and Gürakan, C. 2003. Properties of potential probiotic Lactobacillus plantarum strains. Food Microbiol. 20, 511–518.

    Article  Google Scholar 

  • Chao, S.H., Wu, R.J., Watanabe, K., and Tsai, Y.C. 2009. Diversity of lactic acid bacteria in suan-tsai and fu-tsai, traditional fermented mustard products of Taiwan. Int. J. Food Microbiol. 135, 203–210.

    Article  PubMed  Google Scholar 

  • Chen, Y.Y., Lee, M.H., Hsu, C.C., Wei, C.L., and Tsai, Y.C. 2012. Methyl cinnamate inhibits adipocyte differentiation via activation of the CaMKK2-AMPK pathway in 3T3-L1 preadipocytes. J. Agric. Food Chem. 60, 955–963.

    Article  PubMed  CAS  Google Scholar 

  • Chu, Z.X., Chen, H.Q., Ma, Y.L., Zhou, Y.K., Zhang, M., Zhang, P., and Qin, H.L. 2010. Lactobacillus plantarum prevents the upregulation of adhesion molecule expression in an experimental colitis model. Dig. Dis. Sci. 55, 2505–2513.

    Article  PubMed  CAS  Google Scholar 

  • Coelho, R., Viola, T.W., Walss-Bass, C., Brietzke, E., and Grassi-Oliveira, R. 2014. Childhood maltreatment and inflammatory markers: a systematic review. Acta Psychiatr. Scand. 129, 180–192.

    Article  PubMed  CAS  Google Scholar 

  • Cryan, J.F. and Holmes, A. 2005. The ascent of mouse: advances in modelling human depression and anxiety. Nat. Rev. Drug Discov. 4, 775–790.

    Article  PubMed  CAS  Google Scholar 

  • de Goffau, M.C., Luopajarvi, K., Knip, M., Ilonen, J., Ruohtula, T., Harkonen, T., Orivuori, L., Hakala, S., Welling, G.W., Harmsen, H.J., et al. 2013. Fecal microbiota composition differs between children with beta-cell autoimmunity and those without. Diabetes 62, 1238–1244.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Vos, W.M. and de Vos, E.A. 2012. Role of the intestinal microbiome in health and disease: from correlation to causation. Nutr. Rev. 70 Suppl 1, S45–S56.

    Article  PubMed  Google Scholar 

  • de Vos, W.M. and Hugenholtz, J. 2004. Engineering metabolic highways in Lactococci and other lactic acid bacteria. Trends Biotechnol. 22, 72–79.

    Article  PubMed  CAS  Google Scholar 

  • Dinan, T.G. and Cryan, J.F. 2017. Gut-brain axis i 2016: Brain-gutmicrobiota axis - mood, metabolism and behaviour. Nat. Rev. Gastroenterol. Hepatol. 14, 69–70.

    Article  PubMed  CAS  Google Scholar 

  • Dinan, T.G., Stanton, C., and Cryan, J.F. 2013. Psychobiotics: a novel class of psychotropic. Biol. Psychiatry 74, 720–726.

    Article  PubMed  CAS  Google Scholar 

  • Donia, M.S. and Fischbach, M.A. 2015. Human microbiota. Small molecules from the human microbiota. Science 349, 1254766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duary, R.K., Bhausaheb, M.A., Batish, V.K., and Grover, S. 2012. Anti-inflammatory and immunomodulatory efficacy of indigenous probiotic Lactobacillus plantarum Lp91 in colitis mouse model. Mol. Biol. Rep. 39, 4765–4775.

    Article  PubMed  CAS  Google Scholar 

  • European Food Safety Authority (EFSA). 2018. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 7: suitability of taxonomic units notified to EFSA until Septembe 2017. EFSA J. 16, 5131.

    Google Scholar 

  • EFSA Panel on Dietetic Products, Nutrition and Allergies. 2010. Scientific Opinion on the substantiation of health claims related to live yoghurt cultures and improved lactose digestion (ID 1143, 2976) pursuant to Article 13(1) of Regulation (EC) N 1924 2006. EFSA J. 8, 1736.

    Article  CAS  Google Scholar 

  • Fairweather, D. and Rose, N.R. 2005. Inflammatory heart disease: a role for cytokines. Lupus 14, 646–651.

    Article  PubMed  CAS  Google Scholar 

  • Farmer, S.R. 2006. Transcriptional control of adipocyte formation. Cell. Metab. 4, 263–273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Food and Agriculture Organization/World Health Organization (FAO/WHO). 2002. Guidelines for the evaluation of probiotics in food. Report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food. Food and Agriculture Organization/World Health Organization, London Ontario, Canada

  • Francque, S.M., van der Graaff, D., and Kwanten, W.J. 2016. Nonalcoholic fatty liver disease and cardiovascular risk: Pathophysiological mechanisms and implications. J. Hepatol. 65, 425–443.

    Article  PubMed  CAS  Google Scholar 

  • Fukata, M., Chen, A., Vamadevan, A.S., Cohen, J., Breglio, K., Krishnareddy, S., Hsu, D., Xu, R., Harpaz, N., Dannenberg, A.J., et al. 2007. Toll-like receptor-4 promotes the development of colitisassociated colorectal tumors. Gastroenterology 133, 1869–1881.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Furusawa, Y., Obata, Y., and Hase, K. 2015. Commensal microbiota regulates T cell fate decision in the gut. Semin. Immunopathol. 37, 17–25.

    Article  PubMed  Google Scholar 

  • Greenhalgh, C.J., Miller, M.E., Hilton, D.J., and Lund, P.K. 2002. Suppressors of cytokine signaling: Relevance to gastrointestinal function and disease. Gastroenterology 123, 2064–2081.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, A. and Tiwari, S.K. 2014. Probiotic potential of Lactobacillus plantarum LD1 isolated from batter of Dosa, a South Indian fermented food. Probiotics Antimicrob. Proteins 6, 73–81.

    Article  PubMed  CAS  Google Scholar 

  • Ha, C.G., Cho, J.K., Lee, C.H., Chai, Y.G., Ha, Y.A., and Shin, S.H. 2006. Cholesterol lowering effect of Lactobacillus plantarum isolated from human feces. J. Microbiol. Biotechnol. 16, 1201–1209.

    CAS  Google Scholar 

  • Hill-Burns, E.M., Debelius, J.W., Morton, J.T., Wissemann, W.T., Lewis, M.R., Wallen, Z.D., Peddada, S.D., Factor, S.A., Molho, E., Zabetian, C.P., et al. 2017. Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov. Disord. 32, 739–749.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holzapfel, W.H. and Wood, B.J.B. 2014. Introduction to the LAB, pp. 1–12. In Holzapfel, W.H. and Wood, B.J.B. (eds.), Lactic acid bacteria: Biodiversity and taxonomy. John Wiley & Sons, Ltd, Chichester, UK.

    Chapter  Google Scholar 

  • Huang, H.Y., Korivi, M., Tsai, C.H., Yang, J.H., and Tsai, Y.C. 2013a. Supplementation of Lactobacillus plantarum K68 and fruit-vegetable ferment along with high fat-fructose diet attenuates metabolic syndrome in rats with insulin resistance. Evid. Based Complement. Alternat. Med. 2013, 943020.

    PubMed  PubMed Central  Google Scholar 

  • Huang, R., Tao, X., Wan, C., Li, S., Xu, H., Xu, F., Shah, N.P., and Wei, H. 2015. In vitro probiotic characteristics of Lactobacillus plantarum ZD 2013 and its modulatory effect on gut microbiota of mice. J. Dairy Sci. 98, 5850–5861.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Y., Wang, X., Wang, J., Wu, F., Sui, Y., Yang, L., and Wang, Z. 2013b. Lactobacillus plantarum strains as potential probiotic cultures with cholesterol-lowering activity. J. Dairy Sci. 96, 2746–2753.

    Article  PubMed  CAS  Google Scholar 

  • Ivanovic, N., Minic, R., Dimitrijevic, L., Radojevic Skodric, S., Zivkovic, I., and Djordjevic, B. 2015. Lactobacillus rhamnosus LA68 and Lactobacillus plantarum WCFS1 differently influence metabolic and immunological parameters in high fat diet-induced hypercholesterolemia and hepatic steatosis. Food Funct. 6, 558–565.

    Article  PubMed  CAS  Google Scholar 

  • Izcue, A., Hue, S., Buonocore, S., Arancibia-Carcamo, C.V., Ahern, P.P., Iwakura, Y., Maloy, K.J., and Powrie, F. 2008. Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis. Immunity 28, 559–570.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jang, S.E., Han, M.J., Kim, S.Y., and Kim, D.H. 2014. Lactobacillus plantarum CLP-0611 ameliorates colitis in mice by polarizing M1 to M2-like macrophages. Int. Immunopharmacol. 21, 186–192.

    Article  PubMed  CAS  Google Scholar 

  • Jeong, J.J., Woo, J.Y., Kim, K.A., Han, M.J., and Kim, D.H. 2015. Lactobacillus pentosus var. plantarum C29 ameliorates age-dependent memory impairment in Fischer 344 rats. Lett. Appl. Microbiol. 60, 307–314.

    Article  PubMed  CAS  Google Scholar 

  • Jeun, J., Kim, S., Cho, S.Y., Jun, H.J., Park, H.J., Seo, J.G., Chung, M.J., and Lee, S.J. 2010. Hypocholesterolemic effects of Lactobacillus plantarum KCTC3928 by increased bile acid excretion in C57BL/6 mice. Nutrition 26, 321–330.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, M., Zhang, F., Wan, C., Xiong, Y., Shah, N.P., Wei, H., and Tao, X. 2016. Evaluation of probiotic properties of Lactobacillus plantarum WLPL04 isolated from human breast milk. J. Dairy Sci. 99, 1736–1746.

    Article  PubMed  CAS  Google Scholar 

  • Jung, I.H., Jung, M.A., Kim, E.J., Han, M.J., and Kim, D.H. 2012. Lactobacillus pentosus var. plantarum C29 protects scopolamineinduced memory deficit in mice. J. Appl. Microbiol. 113, 1498–1506.

    Article  PubMed  CAS  Google Scholar 

  • Khan, M.J., Gerasimidis, K., Edwards, C.A., and Shaikh, M.G. 2016. Role of gut microbiota in the aetiology of obesity: Proposed mechanisms and review of the literature. J. Obes. 2016, 7353642.

    PubMed  PubMed Central  Google Scholar 

  • Knosp, C.A., Schiering, C., Spence, S., Carroll, H.P., Nel, H.J., Osbourn, M., Jackson, R., Lyubomska, O., Malissen, B., Ingram, R., et al. 2013. Regulation of Foxp3+ inducible regulatory T cell stability by SOCS2. J. Immunol. 190, 3235–3245.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krawisz, J.E., Sharon, P., and Stenson, W.F. 1984. Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models. Gastroenterology 87, 1344–1350.

    PubMed  CAS  Google Scholar 

  • Kubo, M., Hanada, T., and Yoshimura, A. 2003. Suppressors of cytokine signaling and immunity. Nat. Immunol. 4, 1169–1176.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K., and Muller, W. 1993. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274.

    Article  PubMed  CAS  Google Scholar 

  • Lee, I.A., Bae, E.A., Hyun, Y.J., and Kim, D.H. 2010. Dextran sulfate sodium and 2,4,6-trinitrobenzene sulfonic acid induce lipid peroxidation by the proliferation of intestinal gram-negative bacteria in mice. J. Inflamm. (Lond) 7, 7.

    Article  CAS  Google Scholar 

  • Lee, H.A., Bong, Y.J., Kim, H., Jeong, J.K., Kim, H.Y., Lee, K.W., and Park, K.Y. 2015. Effect of nanometric Lactobacillus plantarum in kimchi on dextran sulfate sodium-induced colitis in mice. J. Med. Food 18, 1073–1080.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H.J., Jeong, J.J., Han, M.J., and Kim, D.H. 2018. Lactobacillus plantarum C29 Alleviates TNBS-induced memory impairment in mice. J. Microbiol. Biotechnol. 28, 175–179.

    PubMed  Google Scholar 

  • Letunic, I. and Bork, P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ley, R.E., Turnbaugh, P.J., Klein, S., and Gordon, J.I. 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., de Haar, C., Chen, M., Deuring, J., Gerrits, M.M., Smits, R., Xia, B., Kuipers, E.J., and van der Woude, C.J. 2010. Disease-related expression of the IL6/STAT3/SOCS3 signalling pathway in ulcerative colitis and ulcerative colitis-related carcinogenesis. Gut 59, 227–235.

    Article  PubMed  CAS  Google Scholar 

  • Li, C., Nie, S.P., Zhu, K.X., Ding, Q., Xiong, T., and Xie, M.Y. 2014. Lactobacillus plantarum NCU116 improves liver function, oxidative stress and lipid metabolism in rats with high fat diet induced non-alcoholic fatty liver disease. Food Funct. 5, 3216–3223.

    Article  PubMed  CAS  Google Scholar 

  • Li, Q. and Verma, I.M. 2002. NF-kappaB regulation in the immune system. Nat. Rev. Immunol. 2, 725–734.

    Article  PubMed  CAS  Google Scholar 

  • Li, X., Wang, N., Yin, B., Fang, D., Jiang, T., Fang, S., Zhao, J., Zhang, H., Wang, G., and Chen, W. 2016a. Effects of Lactobacillus plantarum CCFM0236 on hyperglycaemia and insulin resistance in high-fat and streptozotocin-induced type 2 diabetic mice. J. Appl. Microbiol. 121, 1727–1736.

    Article  PubMed  CAS  Google Scholar 

  • Li, X., Wang, N., Yin, B., Fang, D., Zhao, J., Zhang, H., Wang, G., and Chen, W. 2016b. Lactobacillus plantarum X1 with α-glucosidase inhibitory activity ameliorates type 2 diabetes in mice. RSC Advances 6, 63536–63547.

    Article  CAS  Google Scholar 

  • Liu, W.H., Chuang, H.L., Huang, Y.T., Wu, C.C., Chou, G.T., Wang, S., and Tsai, Y.C. 2016a. Alteration of behavior and monoamine levels attributable to Lactobacillus plantarum PS128 in germ-free mice. Behav. Brain Res. 298, 202–209.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y.W., Liu, W.H., Wu, C.C., Juan, Y.C., Wu, Y.C., Tsai, H.P., Wang, S., and Tsai, Y.C. 2016b. Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naive adult mice. Brain Res. 1631, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y.W., Su, Y.W., Ong, W.K., Cheng, T.H., and Tsai, Y.C. 2011a. Oral administration of Lactobacillus plantarum K68 ameliorates DSS-induced ulcerative colitis in BALB/c mice via the anti-inflammatory and immunomodulatory activities. Int. Immunopharmacol. 11, 2159–2166.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Z., Zhang, P., Ma, Y., Chen, H., Zhou, Y., Zhang, M., Chu, Z., and Qin, H. 2011b. Lactobacillus plantarum prevents the development of colitis in IL-10-deficient mouse by reducing the intestinal permeability. Mol. Biol. Rep. 38, 1353–1361.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Z.J., Yadav, P.K., Su, J.L., Wang, J.S., and Fei, K. 2009. Poten tial role of Th17 cells in the pathogenesis of inflammatory bowel disease. World J. Gastroenterol. 15, 5784–5788.

    CAS  Google Scholar 

  • Logan, A.C., Jacka, F.N., Craig, J.M., and Prescott, S.L. 2016. The microbiome and mental health: Looking back, moving forward with lessons from allergic diseases. Clin. Psychopharmacol. Neurosci. 14, 131–147.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., Jansson, J.K., and Knight, R. 2012. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lupien, S.J., McEwen, B.S., Gunnar, M.R., and Heim, C. 2009. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10, 434–445.

    Article  PubMed  CAS  Google Scholar 

  • Madsen, K.L., Doyle, J.S., Jewell, L.D., Tavernini, M.M., and Fedorak, R.N. 1999. Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology 116, 1107–1114.

    Article  PubMed  CAS  Google Scholar 

  • Mancuso, C. and Santangelo, R. 2017. Alzheimer’s disease and gut microbiota modifications: The long way between preclinical studies and clinical evidence. Pharmacol. Res. 129, 329–336.

    Article  PubMed  CAS  Google Scholar 

  • Martino, M.E., Bayjanov, J.R., Caffrey, B.E., Wels, M., Joncour, P., Hughes, S., Gillet, B., Kleerebezem, M., van Hijum, S.A., and Leulier, F. 2016. Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats. Environ. Microbiol. 18, 4974–4989.

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature 454, 428–435.

    Article  PubMed  CAS  Google Scholar 

  • Moore, K.W., de Waal Malefyt, R., Coffman, R.L., and O’Garra, A. 2001. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765.

    Article  PubMed  CAS  Google Scholar 

  • Mouzaki, M., Comelli, E.M., Arendt, B.M., Bonengel, J., Fung, S.K., Fischer, S.E., McGilvray, I.D., and Allard, J.P. 2013. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 58, 120–127.

    Article  PubMed  CAS  Google Scholar 

  • Mulders, R.J., de Git, K.C.G., Schele, E., Dickson, S.L., Sanz, Y., and Adan, R.A.H. 2018. Microbiota in obesity: interactions with enteroendocrine, immune and central nervous systems. Obes. Rev. 19, 435–451.

    Article  PubMed  CAS  Google Scholar 

  • Murri, M., Leiva, I., Gomez-Zumaquero, J.M., Tinahones, F.J., Cardona, F., Soriguer, F., and Queipo-Ortuno, M.I. 2013. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med. 11, 46.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Hara, A.M. and Shanahan, F. 2006. The gut flora as a forgotten organ. EMBO Rep. 7, 688–693.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Mahony, S.M., Hyland, N.P., Dinan, T.G., and Cryan, J.F. 2011. Maternal separation as a model of brain-gut axis dysfunction. Psychopharmacology (Berl) 214, 71–88.

    Article  CAS  Google Scholar 

  • Okumura, R. and Takeda, K. 2018. Maintenance of intestinal homeostasis by mucosal barriers. Inflamm. Regen. 38, 5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Park, D.Y., Ahn, Y.T., Park, S.H., Huh, C.S., Yoo, S.R., Yu, R., Sung, M.K., McGregor, R.A., and Choi, M.S. 2013a. Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS One 8, e59470.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park, S.Y., Cho, S.A., Kim, S.H., and Lim, S.D. 2014a. Physiological characteristics and anti-obesity effect of Lactobacillus plantarum Q180 isolated from feces. Korean J. Food Sci. Anim. Resour. 34, 647–655.

    Article  Google Scholar 

  • Park, S.Y., Cho, S.A., Lee, M.K., and Lim, S.D. 2015. Effect of Lactobacillus plantarum FH185 on the reduction of adipocyte size and gut microbial changes in mice with diet-induced obesity. Korean J. Food Sci. Anim. Resour. 35, 171–178.

    Article  Google Scholar 

  • Park, S., Ji, Y., Jung, H.Y., Park, H., Kang, J., Choi, S.H., Shin, H., Hyun, C.K., Kim, K.T., and Holzapfel, W.H. 2017. Lactobacillus plantarum HAC01 regulates gut microbiota and adipose tissue accumulation in a diet-induced obesity murine model. Appl. Microbiol. Biotechnol. 101, 1605–1614.

    Article  PubMed  CAS  Google Scholar 

  • Park, S.Y. and Lim, S.D. 2015. Probiotic characteristics of Lactobacillus plantarum FH185 isolated from human feces. Korean J. Food Sci. Anim. Resour. 35, 615–621.

    Article  Google Scholar 

  • Park, J.E., Oh, S.H., and Cha, Y.S. 2013b. Lactobacillus plantarum LG42 isolated from gajami sik-hae inhibits adipogenesis in 3T3- L1 adipocyte. Biomed. Res. Int. 2013, 460927.

    PubMed  PubMed Central  Google Scholar 

  • Park, J.E., Oh, S.H., and Cha, Y.S. 2014b. Lactobacillus plantarum LG42 isolated from gajami sik-hae decreases body and fat pad weights in diet-induced obese mice. J. Appl. Microbiol. 116, 145–156.

    Article  PubMed  CAS  Google Scholar 

  • Parte, A.C. 2014. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res. 42, D613–D616.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Lopez, A., Behnsen, J., Nuccio, S.P., and Raffatellu, M. 2016. Mucosal immunity to pathogenic intestinal bacteria. Nat. Rev. Immunol. 16, 135–148.

    Article  PubMed  CAS  Google Scholar 

  • Perse, M. and Cerar, A. 2011. Morphological and molecular alterations in 1,2 dimethylhydrazine and azoxymethane induced colon carcinogenesis in rats. J. Biomed. Biotechnol. 2011, 473964.

    Article  PubMed  CAS  Google Scholar 

  • Raman, M., Ahmed, I., Gillevet, P.M., Probert, C.S., Ratcliffe, N.M., Smith, S., Greenwood, R., Sikaroodi, M., Lam, V., Crotty, P., et al. 2013. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 11, 868–875.

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi, S. 2005. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 6, 345–352.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, T., Taki, T., Nakamoto, A., Shuto, E., Tsutsumi, R., Toshimitsu, T., Makino, S., and Ikegami, S. 2013. Lactobacillus plantarum OLL2712 regulates glucose metabolism in C57BL/6 mice fed a high-fat diet. J. Nutr. Sci. Vitaminol. (Tokyo) 59, 144–147.

    Article  CAS  Google Scholar 

  • Salaj, R., Stofilova, J., Soltesova, A., Hertelyova, Z., Hijova, E., Bertkova, I., Strojny, L., Kruzliak, P., and Bomba, A. 2013. The effects of two Lactobacillus plantarum strains on rat lipid metabolism receiving a high fat diet. Sci. World J. 2013, 135142.

    Article  CAS  Google Scholar 

  • Saraiva, M. and O’Garra, A. 2010. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 10, 170–181.

    Article  PubMed  CAS  Google Scholar 

  • Satish Kumar, C.S., Kondal Reddy, K., Reddy, A.G., Vinoth, A., Ch, S.R., Boobalan, G., and Rao, G.S. 2015. Protective effect of Lactobacillus plantarum 21, a probiotic on trinitrobenzenesulfonic acid-induced ulcerative colitis in rats. Int. Immunopharmacol. 25, 504–510.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, J. and Kaminker, K. 1962. Myeloperoxidase of the leucocyte of normal human blood. I. Content and localization. Arch. Biochem. Biophys. 96, 465–467.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, M., Veltkamp, C., Dieleman, L.A., Grenther, W.B., Wyrick, P.B., Tonkonogy, S.L., and Sartor, R.B. 2002. Lactobacillus plantarum 299V in the treatment and prevention of spontaneous colitis in interleukin-10-deficient mice. Inflamm. Bowel Dis. 8, 71–80.

    Article  PubMed  Google Scholar 

  • Seki, Y., Inoue, H., Nagata, N., Hayashi, K., Fukuyama, S., Matsumoto, K., Komine, O., Hamano, S., Himeno, K., Inagaki-Ohara, K., et al. 2003. SOCS-3 regulates onset and maintenance of T(H)2-mediated allergic responses. Nat. Med. 9, 1047–1054.

    Article  PubMed  Google Scholar 

  • Song, J.J., Tian, W.J., Kwok, L.Y., Wang, Y.L., Shang, Y.N., Menghe, B., and Wang, J.G. 2017. Effects of microencapsulated Lactobacillus plantarum LIP-1 on the gut microbiota of hyperlipidaemic rats. Br. J. Nutr. 118, 481–492.

    Article  PubMed  CAS  Google Scholar 

  • Stenkula, K.G. and Erlanson-Albertsson, C. 2018. Adipose cell size: Importance in health and disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. DOI: 10.1152/ajpregu.00257.2017

    Google Scholar 

  • Stofilova, J., Szabadosova, V., Hrckova, G., Salaj, R., Bertkova, I., Hijova, E., Strojny, L., and Bomba, A. 2015. Co-administration of a probiotic strain Lactobacillus plantarum LS/07 CCM7766 with prebiotic inulin alleviates the intestinal inflammation in rats exposed to N,N-dimethylhydrazine. Int. Immunopharmacol. 24, 361–368.

    Article  PubMed  CAS  Google Scholar 

  • Strati, F., Cavalieri, D., Albanese, D., De Felice, C., Donati, C., Hayek, J., Jousson, O., Leoncini, S., Renzi, D., Calabro, A., et al. 2017. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 5, 24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki, A., Hanada, T., Mitsuyama, K., Yoshida, T., Kamizono, S., Hoshino, T., Kubo, M., Yamashita, A., Okabe, M., Takeda, K., et al. 2001. CIS3/SOCS3/SSI3 plays a negative regulatory role in STAT3 activation and intestinal inflammation. J. Exp. Med. 193, 471–481.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sydora, B.C., Tavernini, M.M., Wessler, A., Jewell, L.D., and Fedorak, R.N. 2003. Lack of interleukin-10 leads to intestinal inflammation, independent of the time at which luminal microbial colonization occurs. Inflamm. Bowel Dis. 9, 87–97.

    Article  PubMed  Google Scholar 

  • Taylor, A., Verhagen, J., Blaser, K., Akdis, M., and Akdis, C.A. 2006. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: the role of T regulatory cells. Immunology 117, 433–442.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turchi, B., Mancini, S., Fratini, F., Pedonese, F., Nuvoloni, R., Bertelloni, F., Ebani, V.V., and Cerri, D. 2013. Preliminary evaluation of probiotic potential of Lactobacillus plantarum strains isolated from Italian food products. World J. Microbiol. Biotechnol. 29, 1913–1922.

    Article  Google Scholar 

  • Turnbaugh, P.J. and Gordon, J.I. 2009. The core gut microbiome, energy balance and obesity. J. Physiol. 587, 4153–4158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley, R.E., Sogin, M.L., Jones, W.J., Roe, B.A., Affourtit, J.P., et al. 2009. A core gut microbiome in obese and lean twins. Nature 457, 480–484.

    Article  PubMed  CAS  Google Scholar 

  • Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R., and Gordon, J.I. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031.

    Article  PubMed  Google Scholar 

  • U.S. Food and Drug Administration (U.S. FDA). 2015. Generally recognized as safe: Microorganisms & microbial-derived ingredients used in food. Vol 2017.

    Google Scholar 

  • Vanderpool, C., Yan, F., and Polk, D.B. 2008. Mechanisms of probiotic action: Implications for therapeutic applications in inflammatory bowel diseases. Inflamm. Bowel Dis. 14, 1585–1596.

    Article  PubMed  Google Scholar 

  • Vazquez-Vela, M.E., Torres, N., and Tovar, A.R. 2008. White adipose tissue as endocrine organ and its role in obesity. Arch. Med. Res. 39, 715–728.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z., Klipfell, E., Bennett, B.J., Koeth, R., Levison, B.S., Dugar, B., Feldstein, A.E., Britt, E.B., Fu, X., Chung, Y.M., et al. 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, L.X., Liu, K., Gao, D.W., and Hao, J.K. 2013. Protective effects of two Lactobacillus plantarum strains in hyperlipidemic mice. World J. Gastroenterol. 19, 3150–3156.

    CAS  Google Scholar 

  • Whiteford, H.A., Ferrari, A.J., Degenhardt, L., Feigin, V., and Vos, T. 2015. The global burden of mental, neurological and substance use disorders: an analysis from the Global Burden of Disease Stud 2010. PLoS One 10, e0116820.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woese, C.R. 1987. Bacterial evolution. Microbiol. Rev. 51, 221–271.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Woo, J.Y., Gu, W., Kim, K.A., Jang, S.E., Han, M.J., and Kim, D.H. 2014. Lactobacillus pentosus var. plantarum C29 ameliorates memory impairment and inflammaging in a D-galactose-induced accelerated aging mouse model. Anaerobe 27, 22–26.

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (WHO). 2015. Fact sheet: Obesity and overweight. http://www.who.int/mediacentre/factsheets/fs311/en/ (Assessed date: Feb. 13, 2018)

    Google Scholar 

  • World Health Organization (WHO). 2016. Fact sheet: Mental health: strengthening our response. http://www.who.int/mediacentre/ factsheets/fs220/en/ (Assessed date: Feb. 13, 2018)

    Google Scholar 

  • World Health Organization (WHO). 2017. Fact Sheets: Diabetes. http://www.who.int/en/news-room/fact-sheets/detail/diabetes (Assessed date: Aug. 3, 2018)

    Google Scholar 

  • Wu, C.C., Weng, W.L., Lai, W.L., Tsai, H.P., Liu, W.H., Lee, M.H., and Tsai, Y.C. 2015. Effect of Lactobacillus plantarum strain K21 on high-fat diet-fed obese mice. Evid. Based Complement Alternat. Med. 2015, 391767.

    PubMed  PubMed Central  Google Scholar 

  • Xu, H., Barnes, G.T., Yang, Q., Tan, G., Yang, D., Chou, C.J., Sole, J., Nichols, A., Ross, J.S., Tartaglia, L.A., et al. 2003. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investing. 112, 1821–1830.

    Article  CAS  Google Scholar 

  • Yakovlieva, M., Tacheva, T., Mihaylova, S., Tropcheva, R., Trifonova, K., Tolesmall ka, C.A., Danova, S., and Vlaykova, T. 2015. Influence of Lactobacillus brevis 15 and Lactobacillus plantarum 13 on blood glucose and body weight in rats after high-fructose diet. Benef. Microbes 6, 505–512.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Z., Zhang, X., Li, S., Li, C., Li, D., and Yang, Z. 2013. Evaluation of probiotic properties of Lactobacillus plantarum strains isolated from Chinese sauerkraut. World J. Microbiol. Biotechnol. 29, 489–498.

    Article  CAS  Google Scholar 

  • Zago, M., Fornasari, M.E., Carminati, D., Burns, P., Suarez, V., Vinderola, G., Reinheimer, J., and Giraffa, G. 2011. Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiol. 28, 1033–1040.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Zhang, X., Zhang, L., Zhao, Y., Niu, C., Yang, Z., and Li, S. 2014. Potential probiotic characterization of Lactobacillus plantarum strains isolated from Inner Mongolia “Hurood” cheese. J. Microbiol. Biotechnol. 24, 225–235.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, Y., Lu, Y., Wang, J., Yang, L., Pan, C., and Huang, Y. 2013. Probiotic properties of Lactobacillus strains isolated from Tibetan kefir grains. PLoS One 8, e69868.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zuccato, C. and Cattaneo, E. 2009. Brain-derived neurotrophic factor in neurodegenerative diseases. Nat. Rev. Neurol. 5, 311–322.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min-Tze Liong or Ying-Chieh Tsai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YW., Liong, MT. & Tsai, YC. New perspectives of Lactobacillus plantarum as a probiotic: The gut-heart-brain axis. J Microbiol. 56, 601–613 (2018). https://doi.org/10.1007/s12275-018-8079-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-018-8079-2

Keywords

Navigation