Skip to main content

Advertisement

Log in

Commensal microbiota regulates T cell fate decision in the gut

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Commensal microbiota shapes the intestinal immune system by regulating T helper (TH) cell lineage differentiation. For example, Bacteroides fragilis colonization not only optimizes the systemic TH1/TH2 balance, but also can induce regulatory T (Treg) cell differentiation in the gut. In addition, segmented filamentous bacteria (SFB) facilitate the development of TH17 cells in the small intestine. The 17 strains within clusters IV, XIVa, and XVIII of Clostridiales found in human feces can also induce the differentiation and expansion of Treg cells in the colon. Thus, the regulation of TH cell differentiation by commensal bacteria is evident; however, the molecular mechanisms underlying these processes remain uncertain. Recent studies have demonstrated that bacterial components, as well as their metabolites, play a central role in regulating TH cell development. Furthermore, these metabolites can elicit changes in histone posttranslational modification to modify the expression of critical regulators of T cell fate. In this review, we discuss the mechanisms and biological significance of microbiota-dependent TH differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nicholson JK, Holmes E, Kinross J et al (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267

    Article  CAS  PubMed  Google Scholar 

  2. Sommer F, Bäckhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11:227–238

    Article  CAS  PubMed  Google Scholar 

  3. Tomboli CP, Neut C, Desreumaux P, Colombel JF (2003) Dysbiosis in inflammatory bowel disease. Gut 53:1–4

    Article  Google Scholar 

  4. Ivanov II, Atarashi K, Manel N et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Geuking MB, Cahenzli J, Lawson MAE et al (2011) Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34:794–806

    Article  CAS  PubMed  Google Scholar 

  6. Atarashi K, Tanoue T, Shima T et al (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331:337–341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Brestoff JR, Artis D (2013) Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol 14:676–684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118

    Article  CAS  PubMed  Google Scholar 

  9. Cahenzli J, Köller Y, Wyss M et al (2013) Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe 14:559–570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Koloski NA (2008) Hygiene hypothesis in inflammatory bowel disease: a critical review of the literature. World J Gastroenterol 14:165–173

    Article  PubMed Central  PubMed  Google Scholar 

  11. Umetsu DT, McIntire JJ, Akbari O et al (2002) Asthma: an epidemic of dysregulated immunity. Nat Immunol 3:715–720

    Article  CAS  PubMed  Google Scholar 

  12. Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453:620–625

    Article  CAS  PubMed  Google Scholar 

  13. Atarashi K, Honda K (2011) Microbiota in autoimmunity and tolerance. Curr Opin Immunol 23:761–768

    Article  CAS  PubMed  Google Scholar 

  14. Tanoue T, Honda K (2012) Induction of Treg cells in the mouse colonic mucosa: a central mechanism to maintain host-microbiota homeostasis. Semin Immunol 24:50–57

  15. Duan J, Kasper DL (2011) Regulation of T cells by gut commensal microbiota. Curr Opin Rheumatol 23:372–376

    Article  CAS  PubMed  Google Scholar 

  16. Wang Q, McLoughlin RM, Cobb BA et al (2006) A bacterial carbohydrate links innate and adaptive responses through Toll-like receptor 2. J Exp Med 203:2853–2863

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Imanishi T, Hara H, Suzuki S et al (2007) Cutting edge: TLR2 directly triggers Th1 effector functions. J Immunol 178:6715–6719

    Article  CAS  PubMed  Google Scholar 

  18. Atarashi K, Nishimura J, Shima T et al (2008) ATP drives lamina propria TH17 cell differentiation. Nature 455:808–812

    Article  CAS  PubMed  Google Scholar 

  19. Goto Y, Panea C, Nakato G et al (2014) Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity 40:594–607

    Article  CAS  PubMed  Google Scholar 

  20. Chaudhry A, Samstein RM, Treuting P et al (2011) Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 34:566–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Walker LSK, Sansom DM (2011) The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol 11:852–863

    Article  CAS  PubMed  Google Scholar 

  22. Riella LV, Paterson AM, Sharpe AH, Chandraker A (2012) Role of the PD-1 pathway in the immune response. Am J Transplant 12:2575–2587

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Abbas AK, Benoist C, Bluestone JA et al (2013) Regulatory T cells: recommendation to simplify the nomenclature. Nat Immunol 14:307–308

    Article  CAS  PubMed  Google Scholar 

  24. Thornton AM, Korty PE, Tran DQ et al (2010) Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol 184:3433–3441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Yadav M, Louvet C, Davini D et al (2012) Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J Exp Med 209:1713–1722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Weiss JM, Bilate AM, Gobert M et al (2012) Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J Exp Med 209:1732–1742

    Article  Google Scholar 

  27. Obata Y, Furusawa Y, Endo TA et al (2014) The epigenetic regulator Uhrf1 facilitates the proliferation and maturation of colonic regulatory T cells. Nat Immunol 15:571–579

    Article  CAS  PubMed  Google Scholar 

  28. Round JL, Mazmanian SK (2010) Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci 107:12204–12209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Frank DN, St Amand AL, Feldman RA et al (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci 104:13780–13785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Sokol H, Seksik P, Furet JP et al (2009) Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 15:1183–1189

    Article  CAS  PubMed  Google Scholar 

  31. Atarashi K, Tanoue T, Oshima K et al (2013) Induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500:232–236

    Article  CAS  PubMed  Google Scholar 

  32. Smith PM, Howitt MR, Panikov N et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573

    Article  CAS  PubMed  Google Scholar 

  33. Arpaia N, Campbell C, Fan X et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504:451–455

    Article  CAS  PubMed  Google Scholar 

  34. Furusawa Y, Obata Y, Fukuda S et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450

    Article  CAS  PubMed  Google Scholar 

  35. Singh N, Gurav A, Sivaprakasam S et al (2014) Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40:128–139

    Article  CAS  PubMed  Google Scholar 

  36. Pryde SE, Duncan SH, Hold GL et al (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217:133–139

    Article  CAS  PubMed  Google Scholar 

  37. Narushima S, Sugiura Y, Oshima K et al (2014) Characterization of the 17 strains of regulatory T cell-inducing human-derived Clostridia. Gut Microbe 5:333–339

    Article  Google Scholar 

  38. Annison G, Illman RJ, Topping DL (2003) Acetylated, propionylated or butyrylated starches raise large bowel short-chain fatty acids preferentially when fed to rats. J Nutr 133:3523–3528

    CAS  PubMed  Google Scholar 

  39. Kim SV, Xiang WV, Kwak C et al (2013) GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science 340:1456–1459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Trompette AEL, Gollwitzer ES, Yadava K et al (2014) Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20:159–166

    Article  CAS  PubMed  Google Scholar 

  41. Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304

    Article  CAS  PubMed  Google Scholar 

  42. Kornberg RD, Lorch Y (1992) Chromatin structure and transcription. Ann Rev Cell Biol 8:563–587

    Article  CAS  PubMed  Google Scholar 

  43. Jenuwein T (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y (2003) Transcriptional regulation by histone ubiquitination and deubiquitination. Gene Dev 17:2733–2740

    Article  CAS  PubMed  Google Scholar 

  45. Lee DY, Hayes JJ, Pruss D, Wolffe AP (1993) A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72:73–84

    Article  CAS  PubMed  Google Scholar 

  46. Weng N-P, Araki Y, Subedi K (2012) The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation. Nat Rev Immunol 12:306–315

    Article  CAS  PubMed  Google Scholar 

  47. Zediak VP, Wherry EJ, Berger SL (2011) The contribution of epigenetic memory to immunologic memory. Curr Opin Gene Dev 21:154–159

    Article  CAS  Google Scholar 

  48. Turner SJ (2013) T cell immunity as a tool for studying epigenetic regulation of cellular differentiation. Front Genet 4(218):1–10

    Google Scholar 

  49. Afzali B (2013) Thymic versus induced regulatory T cells—who regulates the regulators? Front Immunol 4(169):1–22

    Google Scholar 

  50. Zheng Y, Josefowicz S, Chaudhry A et al (2010) Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463:808–812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Candido EP, Reeves R, Davie JR (1978) Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14:105–113

    Article  CAS  PubMed  Google Scholar 

  52. Licciardi PV, Wong S-S, Tang ML, Karagiannis TC (2010) Epigenome targeting by probiotic metabolites. Gut Pathog 2:24

    Article  PubMed Central  PubMed  Google Scholar 

  53. Vinolo MA, Rodrigues HG, Nachbar RT et al (2011) Regulation of inflammation by short chain fatty acids. Nutrient 3:858–876

    Article  CAS  Google Scholar 

  54. Chang PV, Hao L, Offermanns S et al (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci 111:2247–2252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Witt O, Deubzer HE, Milde T, Oehme I (2009) HDAC family: what are the cancer relevant targets? Cancer Lett 277:8–21

    Article  CAS  PubMed  Google Scholar 

  56. Davie JR (2003) Inhibition of histone deacetylase activity by butyrate. J Nutr 133:2485S–2493S

    CAS  PubMed  Google Scholar 

  57. Beier UH, Wang L, Han R et al (2012) Histone deacetylases 6 and 9 and sirtuin-1 control Foxp3+ regulatory T cell function through shared and isoform-specific mechanisms. Sci Signal 5:ra45

    Article  PubMed Central  PubMed  Google Scholar 

  58. Tao R, de Zoeten EF, Ozkaynak E et al (2007) Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med 13:1299–1307

    Article  CAS  PubMed  Google Scholar 

  59. Burchill MA, Yang J, Vogtenhuber C et al (2006) IL-2 receptor-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol 178:280–290

    Article  Google Scholar 

  60. van Loosdregt J, Vercoulen Y, Guichelaar T et al (2010) Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 115:965–974

    Article  PubMed  Google Scholar 

  61. Kim HP, Leonard WJ (2007) CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J Exp Med 204:1543–1551

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Huehn J, Polansky JK, Hamann A (2009) Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat Rev Immunol 9:83–89

    Article  CAS  PubMed  Google Scholar 

  63. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Rev Biotechnol 28:1057–1068

    Article  CAS  Google Scholar 

  64. Josefowicz SZ, Wilson CB, Rudensky AY (2009) Cutting edge: TCR stimulation is sufficient for induction of Foxp3 expression in the absence of DNA methyltransferase 1. J Immunol 182:6648–6652

    Article  CAS  PubMed  Google Scholar 

  65. Lal G, Zhang N, van der Touw W et al (2009) Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol 182:259–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Sharif J, Muto M, Takebayashi S-I et al (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450:908–912

    Article  CAS  PubMed  Google Scholar 

  67. Bertoli C, Skotheim JM, de Bruin RAM (2013) Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol 14:518–528

    Article  CAS  PubMed  Google Scholar 

  68. Yang W, Bancroft L, Augenlicht LH (2005) Methylation in the p21WAF1/cip1 promoter of Apc+/−, p21+/− mice and lack of response to sulindac. Oncogene 24:2104–2109

    Article  CAS  PubMed  Google Scholar 

  69. Kim JK, Esteve PO, Jacobsen SE, Pradhan S (2008) UHRF1 binds G9a and participates in p21 transcriptional regulation in mammalian cells. Nucl Acid Res 37:493–505

    Article  Google Scholar 

  70. Koinuma D, Tsutsumi S, Kamimura N et al (2008) Chromatin immunoprecipitation on microarray analysis of Smad2/3 binding sites reveals roles of ETS1 and TFAP2A in transforming growth factor signaling. Mol Cell Biol 29:172–186

    Article  PubMed Central  PubMed  Google Scholar 

  71. Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY (2005) A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6:1142–1151

    Article  CAS  PubMed  Google Scholar 

  72. Yang X-P, Ghoreschi K, Steward-Tharp SM et al (2011) Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol 12:247–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part with grants from the Japan Society for the Promotion of Science (24117723 to K.H. and 24890293 to Y.F.), the Japan Science and Technology Agency (K.H.), and the Ministry of Health Labour and Welfare (K.H.).

Conflict of interest

The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Hase.

Additional information

This article is a contribution to the Special Issue on Microbiome, Immunity and Inflammation - Guest Editor: Hiroshi Ohno

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furusawa, Y., Obata, Y. & Hase, K. Commensal microbiota regulates T cell fate decision in the gut. Semin Immunopathol 37, 17–25 (2015). https://doi.org/10.1007/s00281-014-0455-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-014-0455-3

Keywords

Navigation