Skip to main content
Log in

High-performance ultrathin Ag electrodes by chemical bond anchoring Ag atoms for stretchable organic light-emitting devices

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The progress of stretchable organic light-emitting devices (OLEDs) has brought about new possibilities for highly functional wearable electronics. However, the efficiency and durability of stretchable OLEDs have been limited by the performance of stretchable transparent electrodes. Here, we proposed an interface engineering strategy that involves anchoring the growth of silver (Ag) atoms with amine-enriched biomaterials for high-quality stretchable transparent electrodes. The strong interactions between the Ag atom and the amine group enable the uniform Ag electrodes at an ultralow thickness of 7 nm, and provide remarkable mechanical flexibility and strain endurance to the Ag electrodes. The distinct effects of different amino acids were investigated, and a deep understanding of their unique contributions to the film formation process was gained. The resulting ultrathin Ag electrodes exhibit outstanding optoelectrical properties (transmittance of ~ 98% and sheet resistance of ~ 8.7 Ω/sq) and excellent stretchability during 500 stretching cycles at 100% strain. Stretchable green phosphorescent OLEDs based on the Ag electrodes have been demonstrated with a current efficiency of up to ~ 70.4 cd/A. Impressively, the devices show excellent stretching stability, retaining ~ 89% of the original luminance and ~ 78% of the original current efficiency after 200 stretching cycles at 100% strain. This work opens up new possibilities for stretchable transparent electrodes, fostering advancements in wearable displays and other innovative flexible devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi, D. K.; Kim, D. H.; Lee, C. M.; Hafeez, H.; Sarker, S.; Yang, J. S.; Chae, H. J.; Jeong, G. W.; Choi, D. H.; Kim, T. W. et al. Highly efficient, heat dissipating, stretchable organic light-emitting diodes based on a MoO3/Au/MoO3 electrode with encapsulation. Nat. Commun. 2021, 12, 2864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yin, D.; Feng, J.; Ma, R.; Liu, Y. F.; Zhang, Y. L.; Zhang, X. L.; Bi, Y. G.; Chen, Q. D.; Sun, H. B. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process. Nat. Commun. 2016, 7, 11573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, Z. T.; Wang, W. C.; Jiang, Y. W.; Wang, Y. X.; Wu, Y. L.; Lai, J. C.; Niu, S. M.; Xu, C. Y.; Shih, C. C.; Wang, C. et al. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 2022, 603, 624–630.

    Article  CAS  PubMed  Google Scholar 

  4. Cho, C.; Kang, P.; Taqieddin, A.; Jing, Y. H.; Yong, K.; Kim, J. M.; Haque, M. F.; Aluru, N. R.; Nam, S. Stain-resilient electrical functionality in thin-film metal electrodes using two-dimensional interlayers. Nat. Electron. 2021, 4, 126–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lim, M. S.; Nam, M.; Choi, S.; Jeon, Y.; Son, Y. H.; Lee, S. M.; Choi, K. C. Two- dimensionally stretchable organic light-emitting diode with elastic pillar arrays for stress relief. Nano Lett. 2020, 20, 1526–1535.

    Article  CAS  PubMed  Google Scholar 

  6. Yao, L. Q.; Qin, Y.; Li, X. C.; Xue, Q.; Liu, F.; Cheng, T.; Li, G. J.; Zhang, X. W.; Lai, W. Y. High- efficiency stretchable organic light-emitting diodes based on ultra-flexible printed embedded metal composite electrodes. InfoMat 2023, 5, e12410.

    Article  CAS  Google Scholar 

  7. Lee, S. M.; Cho, Y.; Kim, D. Y.; Chae, J. S.; Choi, K. C. Enhanced light extraction from mechanically flexible, nanostructured organic light-emitting diodes with plasmonic nanomesh electrodes. Adv. Opt. Mater. 2015, 3, 1240–1247.

    Article  CAS  Google Scholar 

  8. Azani, M. R.; Hassanpour, A.; Torres, T. Benefits, problems, and solutions of silver nanowire transparent conductive electrodes in indium tin oxide (ITO)-free flexible solar cells. Adv. Energy Mater. 2020, 10, 2002536.

    Article  CAS  Google Scholar 

  9. Patil, J. J.; Chae, W. H.; Trebach, A.; Carter, K. J.; Lee, E.; Sannicolo, T.; Grossman, J. C. Failing forward: Stability of transparent electrodes based on metal nanowire networks. Adv. Mater. 2021, 33, 2004356.

    Article  CAS  Google Scholar 

  10. Li, Z. H.; Li, H. K.; Zhu, X. Y.; Peng, Z. L.; Zhang, G. M.; Yang, J. J.; Wang, F.; Zhang, Y. F.; Sun, L. F.; Wang, R. et al. Directly printed embedded metal mesh for flexible transparent electrode via liquid substrate electric-field-driven jet. Adv. Sci. 2022, 9, 2105331.

    Article  CAS  Google Scholar 

  11. Zhao, Z. Y.; Liu, K.; Liu, Y. W.; Guo, Y. L.; Liu, Y. Q. Intrinsically flexible displays: Key materials and devices. Natl. Sci. Rev. 2022, 9, nwac090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Woo, J. Y.; Park, M. H.; Jeong, S. H.; Kim, Y. H.; Kim, B.; Lee, T. W.; Han, T. H. Advances in solution-processed OLEDs and their prospects for use in displays. Adv. Mater. 2023, 35, 2207454.

    Article  CAS  Google Scholar 

  13. Hippola, C.; Kaudal, R.; Manna, E.; Xiao, T.; Peer, A.; Biswas, R.; Slafer, W. D.; Trovato, T.; Shinar, J.; Shinar, R. Enhanced light extraction from OLEDs fabricated on patterned plastic substrates. Adv. Opt. Mater. 2018, 6, 1701244.

    Article  Google Scholar 

  14. Dauzon, E.; Lin, Y. B.; Faber, H.; Yengel, E.; Sallenave, X.; Plesse, C.; Goubard, F.; Amassian, A.; Anthopoulos, T. D. Stretchable and transparent conductive PEDOT:PSS-based electrodes for organic photovoltaics and strain sensors applications. Adv. Funct. Mater. 2020, 30, 2001251.

    Article  CAS  Google Scholar 

  15. Lee, H.; Han, G.; Kim, M.; Ahn, H. S.; Lee, H. High mechanical and tribological stability of an elastic ultrathin overcoating layer for flexible silver nanowire films. Adv. Mater. 2015, 27, 2252–2259.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, H. Y.; Han, S. J.; Harit, A. K.; Kim, D. H.; Kim, D. Y.; Choi, Y. S.; Kwon, H.; Kim, K. N.; Go, G. T.; Yun, H. J. et al. Graphene-based intrinsically stretchable 2D-contact electrodes for highly efficient organic light-emitting diodes. Adv. Mater. 2022, 34, 2203040.

    Article  CAS  Google Scholar 

  17. Kang, H.; Jung, S.; Jeong, S.; Kim, G.; Lee, K. Polymer-metal hybrid transparent electrodes for flexible electronics. Nat. Commun. 2015, 6, 6503.

    Article  CAS  PubMed  Google Scholar 

  18. Jeong, S.; Jung, S.; Kang, H.; Lee, D.; Choi, S. B.; Kim, S.; Park, B.; Yu, K.; Lee, J.; Lee, K. Role of polymeric metal nucleation inducers in fabricating large-area, flexible, and transparent electrodes for printable electronics. Adv. Funct. Mater. 2017, 27, 1606842.

    Article  Google Scholar 

  19. Lee, T.; Kim, D.; Suk, M. E.; Bang, G.; Choi, J.; Bae, J. S.; Yoon, J. H.; Moon, W. J.; Choi, D. Regulating Ag wettability via modulating surface stoichiometry of ZnO substrates for flexible electronics. Adv. Funct. Mater. 2021, 31, 2104372.

    Article  CAS  Google Scholar 

  20. Ji, C. G.; Liu, D.; Zhang, C.; Guo, L. J. Ultrathin-metal-film-based transparent electrodes with relative transmittance surpassing 100%. Nat. Commun. 2020, 11, 3367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vj, L.; Kobayashi, N. P.; Islam, M. S.; Wu, W.; Chaturvedi, P.; Fang, N. X.; Wang, S. Y.; Williams, R. S. Ultrasmooth silver thin films deposited with a germanium nucleation layer. Nano Lett. 2009, 9, 178–182.

    Article  Google Scholar 

  22. Luo, S. H.; Lian, E. K.; He, J. L.; deMello, J. C. Flexible transparent electrodes formed from template-patterned thin-film silver. Adv. Mater., in press, https://doi.org/10.1002/adma.202300058.

  23. Yun, J. Ultrathin metal films for transparent electrodes of flexible optoelectronic devices. Adv. Funct. Mater. 2017, 27, 1606641.

    Article  Google Scholar 

  24. Zhang, C.; Zhao, D. W.; Gu, D. E.; Kim, H.; Ling, T.; Wu, Y. K. R.; Guo, L. J. An ultrathin, smooth, and low-loss Al-doped Ag film and its application as a transparent electrode in organic photovoltaics. Adv. Mater. 2014, 26, 5696–5701.

    Article  CAS  PubMed  Google Scholar 

  25. Sergeant, N. P.; Hadipour, A.; Niesen, B.; Cheyns, D.; Heremans, P.; Peumans, P.; Rand, B. P. Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells. Adv. Mater. 2012, 24, 728–732.

    Article  CAS  PubMed  Google Scholar 

  26. Kim, D. Y.; Han, Y. C.; Kim, H. C.; Jeong, E. G.; Choi, K. C. Highly transparent and flexible organic light-emitting diodes with structure optimized for anode/cathode multilayer electrodes. Adv. Funct. Mater. 2015, 25, 7145–7153.

    Article  CAS  Google Scholar 

  27. Schubert, S.; Meiss, J.; Müller-Meskamp, L.; Leo, K. Improvement of transparent metal top electrodes for organic solar cells by introducing a high surface energy seed layer. Adv. Energy Mater. 2013, 3, 438–443.

    Article  CAS  Google Scholar 

  28. Lee, S.; Guo, L. J. Bioinspired toughening mechanisms in a multilayer transparent conductor structure. ACS Appl. Mater. Interfaces 2022, 14, 7440–7449.

    Article  CAS  PubMed  Google Scholar 

  29. Hwang, B.; Kim, W.; Kim, J.; Lee, S.; Lim, S.; Kim, S.; Oh, S. H.; Ryu, S.; Han, S. M. Role of graphene in reducing fatigue damage in Cu/Gr nanolayered composite. Nano Lett. 2017, 17, 4740–4745.

    Article  CAS  PubMed  Google Scholar 

  30. Kaiser, N. Review of the fundamentals of thin-film growth. Appl. Opt. 2002, 41, 3053–3060.

    Article  CAS  PubMed  Google Scholar 

  31. Choi, J.; Bang, G.; Lee, T.; Tran, V. T. B.; Bae, J. S.; Choi, D. Simultaneous enhancement in visible transparency and electrical conductivity via the physicochemical alterations of ultrathin-silver-film-based transparent electrodes. Nano Lett. 2022, 22, 3133–3140.

    Article  CAS  PubMed  Google Scholar 

  32. Kang, H.; Hong, S.; Lee, J.; Lee, K. Electrostatically self-assembled nonconjugated polyelectrolytes as an ideal interfacial layer for inverted polymer solar cells. Adv. Mater. 2012, 24, 3005–3009.

    Article  CAS  PubMed  Google Scholar 

  33. Kim, Y. H.; Han, T. H.; Cho, H.; Min, S. Y.; Lee, C. L.; Lee, T. W. Polyethylene imine as an ideal interlayer for highly efficient inverted polymer light-emitting diodes. Adv. Funct. Mater. 2014, 24, 3808–3814.

    Article  CAS  Google Scholar 

  34. Xiao, F. X.; Wang, F. C.; Fu, X. Z.; Zheng, Y. A green and facile self-assembly preparation of gold nanoparticles/ZnO nanocomposite for photocatalytic and photoelectrochemical applications. J. Mater. Chem. 2012, 22, 2868–2877.

    Article  CAS  Google Scholar 

  35. Chen, Y. H.; Chu, S. Q.; Li, R. Q.; Qin, Y. B.; Xu, Y. N.; Zhang, X. W.; Wang, J.; Liu, M. J.; Lai, W. Y.; Huang, W. Highly efficient inverted organic light-emitting devices adopting solution-processed double electron-injection layers. Org. Electron. 2019, 66, 1–6.

    Article  Google Scholar 

  36. Qin, Y.; Yao, L. Q.; Zhang, F. B.; Li, R. Q.; Chen, Y. J.; Chen, Y. H.; Cheng, T.; Lai, W. Y.; Mi, B. X.; Zhang, X. W. et al. Highly stable silver nanowires/biomaterial transparent electrodes for flexible electronics. ACS Appl. Mater. Interfaces 2022, 14, 38021–38030.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2022YFA1204404), the National Natural Science Foundation of China (Nos. 62274095, 61774088, and 61705112 ), the Natural Science Foundation of the Education Committee of Jiangsu Province (No. 22KJA510004), the Synergistic Innovation Center for Organic Electronics and Information Displays, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (No. YX030003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuehua Chen or Xinwen Zhang.

Electronic supplementary material

12274_2024_6718_MOESM1_ESM.pdf

High-performance ultrathin Ag electrodes by chemical bond anchoring Ag atoms for stretchable organic light-emitting devices

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Wang, Y., Wang, X. et al. High-performance ultrathin Ag electrodes by chemical bond anchoring Ag atoms for stretchable organic light-emitting devices. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6718-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6718-y

Keywords

Navigation