Skip to main content
Log in

Synergistic Ru/RuO2 heterojunctions stabilized by carbon coating as efficient and stable bifunctional electrocatalysts for acidic overall water splitting

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of highly active and stable acidic water oxidation electrocatalysts is of great significant for promoting the industrial application of proton exchange membrane electrolyzers. Ru-based catalysts have broad application prospects in acidic water oxidation, but their limitations in stability and activity hinder their further application. Herein, a nitrogen-doped carbon (NC) coated porous Ru/RuO2 heterojunctional hollow sphere (Ru/RuO2/NC) is designed as high-active and stable bifunctional electrocatalyst for acidic oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). In synthesis, the key is to use mesoporous polydopamine spheres as a template for forming hollow spheres, a source of NC coating and a reducing agent for forming Ru/RuO2 heterojunction. The Ru/RuO2 heterojunction adjusts the electronic structure of Ru active sites, optimizing the adsorption of intermediate species. Furthermore, the NC coating and the interaction between NC and Ru/RuO2 effectively prevent Ru from over-oxidation and dissolution. The porous hollow structure provides more exposed active sites and promotes mass transfer. Impressively, Ru/RuO2/NC exhibits outstanding OER and HER performance with low overpotentials of 211 and 32 mV at 10 mA·cm−2, respectively, and shows excellent stability. The acid water splitting electrolyzer, based on the bifunctional Ru/RuO2/NC, requires low cell voltages of 1.46 and 1.76 V at 10 and 100 mA·cm−2, respectively, with good stability for over 100 h operation, surpassing Pt/C∥RuO2 and most of the reported catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qin, Q.; Jang, H.; Chen, L. L.; Nam, G.; Liu, X. E.; Cho, J. Low loading of RhxP and RuP on N, P codoped carbon as two trifunctional electrocatalysts for the oxygen and hydrogen electrode reactions. Adv. Energy Mater. 2018, 8, 1801478.

    Article  Google Scholar 

  2. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science. 2017, 355, eaad4998.

    Article  PubMed  Google Scholar 

  3. Kong, F. T.; Qiao, Y.; Zhang, C. Q.; Fan, X. H.; Kong, A. G.; Shan, Y. K. Unadulterated carbon as robust multifunctional electrocatalyst for overall water splitting and oxygen transformation. Nano Res. 2020, 13, 401–411.

    Article  CAS  Google Scholar 

  4. Liu, G.; Gao, X. S.; Wang, K. F.; He, D. Y.; Li, J. P. Mesoporous nickel-iron binary oxide nanorods for efficient electrocatalytic water oxidation. Nano Res. 2017, 10, 2096–2105.

    Article  CAS  Google Scholar 

  5. Yuan, S.; Zhao, C. F.; Cai, X. Y.; An, L.; Shen, S. Y.; Yan, X. H.; Zhang, J. L. Bubble evolution and transport in PEM water electrolysis: Mechanism, impact, and management. Prog. Energy Combust. Sci. 2023, 96, 101075.

    Article  Google Scholar 

  6. Chen, Z. C.; Guo, L.; Pan, L.; Yan, T. Q.; He, Z. X.; Li, Y.; Shi, C. X.; Huang, Z. F.; Zhang, X. W.; Zou, J. J. Advances in oxygen evolution electrocatalysts for proton exchange membrane water electrolyzers. Adv. Energy Mater. 2022, 12, 2103670.

    Article  CAS  Google Scholar 

  7. Yang, L.; Yu, G. T.; Ai, X.; Yan, W. S.; Duan, H. L.; Chen, W.; Li, X. T.; Wang, T.; Zhang, C. H.; Huang, X. R. et al. Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers. Nat. Commun. 2018, 9, 5236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fan, Z. L.; Ji, Y. J.; Shao, Q.; Geng, S. Z.; Zhu, W. X.; Liu, Y.; Liao, F.; Hu, Z. W.; Chang, Y. C.; Pao, C. W. et al. Extraordinary acidic oxygen evolution on new phase 3R-iridium oxide. Joule 2021, 5, 3221–3234.

    Article  CAS  Google Scholar 

  9. Zuo, S. W.; Wu, Z. P.; Zhang, H. B.; Lou, X. W. Opeanndo monitoring and deciphering the structural evolution in oxygen evolution electrocatalysis. Adv. Energy Mater. 2022, 12, 2103383.

    Article  CAS  Google Scholar 

  10. Wu, Z. P.; Zhang, H. B.; Zuo, S. W.; Wang, Y.; Zhang, S. L.; Zhang, J.; Zang, S. Q.; Lou, X. W. Manipulating the local coordination and electronic structures for efficient electrocatalytic oxygen evolution. Adv. Mater. 2021, 33, 2103004.

    Article  CAS  Google Scholar 

  11. Chen, Z. J.; Duan, X. G.; Wei, W.; Wang, S. B.; Ni, B. J. Iridium-based nanomaterials for electrochemical water splitting. Nano Energy. 2020, 78, 105270.

    Article  CAS  Google Scholar 

  12. Su, J. W.; Yang, Y.; Xia, G. L.; Chen, J. T.; Jiang, P.; Chen, Q. W. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 2017, 8, 14969.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yao, Q.; Huang, B. L.; Zhang, N.; Sun, M. Z.; Shao, Q.; Huang, X. Q. Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis. Angew. Chem., Int. Ed. 2019, 58, 13983–13988.

    Article  CAS  Google Scholar 

  14. Lin, Y. C.; Tian, Z. Q.; Zhang, L. H.; Ma, J. Y.; Jiang, Z.; Deibert, B. J.; Ge, R. X.; Chen, L. Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nat. Commun. 2019, 10, 162.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cui, X. J.; Ren, P. J.; Ma, C.; Zhao, J.; Chen, R. X.; Chen, S. M.; Rajan, N. P.; Li, H. B.; Yu, L.; Tian, Z. Q. et al. Robust interface Ru centers for high-performance acidic oxygen evolution. Adv. Mater. 2020, 32, 1908126.

    Article  CAS  Google Scholar 

  16. Ji, M. W.; Yang, X.; Chang, S. D.; Chen, W. X.; Wang, J.; He, D. S.; Hu, Y.; Deng, Q.; Sun, Y.; Li, B. et al. RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid. Nano Res. 2022, 15, 1959–1965.

    Article  CAS  Google Scholar 

  17. Su, J. W.; Ge, R. X.; Jiang, K. M.; Dong, Y.; Hao, F.; Tian, Z. Q.; Chen, G. X.; Chen, L. Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: Highly robust electrocatalysts for oxygen evolution in acidic media. Adv. Mater. 2018, 30, 1801351.

    Article  Google Scholar 

  18. Zhuang, L. Z.; Jia, Y.; Liu, H. L.; Li, Z. H.; Li, M. R.; Zhang, L. Z.; Wang, X.; Yang, D. J.; Zhu, Z. H.; Yao, X. D. Sulfur-modified oxygen vacancies in iron-cobalt oxide nanosheets: Enabling extremely high activity of the oxygen evolution reaction to achieve the industrial water splitting benchmark. Angew. Chem., Int. Ed. 2020, 59, 14664–14670.

    Article  CAS  Google Scholar 

  19. Xue, Y. R.; Fang, J. J.; Wang, X. D.; Xu, Z. Y.; Zhang, Y. F.; Lv, Q. Q.; Liu, M. Y.; Zhu, W.; Zhuang, Z. B. Sulfate-functionalized RuFeOx as highly efficient oxygen evolution reaction electrocatalyst in acid. Adv. Funnt. Mater. 2021, 31, 2101405.

    Article  CAS  Google Scholar 

  20. Xia, Z. Y.; Deng, B. L.; Wang, Y. J.; Jiang, Z. Q.; Jiang, Z. J. Synergistic co-doping induced high catalytic activities of La/Fe doped Co3O4 towards oxygen reduction/evolution reactions for Zn-air batteries. J. Mater. Chem. A 2022, 10, 23483–23493.

    Article  CAS  Google Scholar 

  21. Zhu, Y. L.; Tahini, H. A.; Hu, Z. W.; Chen, Z. G.; Zhou, W.; Komarek, A. C.; Lin, Q.; Lin, H. J.; Chen, C. T.; Zhong, Y. J. et al. Boosting oxygen evolution reaction by creating both metal ion and lattice-oxygen active sites in a complex oxide. Adv. Mater. 2020, 32, 1905025.

    Article  CAS  Google Scholar 

  22. Sun, C.; Wang, P. P.; Wang, H.; Xu, C.; Zhu, J. T.; Liang, Y. X.; Su, Y.; Jiang, Y. N.; Wu, W. Q.; Fu, E. G. et al. Defect engineering of molybdenum disulfide through ion irradiation to boost hydrogen evolution reaction performance. Nano Res. 2019, 12, 1613–1618

    Article  CAS  Google Scholar 

  23. Yan, D. F.; Xia, C. F.; Zhang, W. J.; Hu, Q.; He, C. X.; Xia, B. Y.; Wang, S. Y. Cation defect engineering of transition metal electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 2022, 12, 2202317.

    Article  CAS  Google Scholar 

  24. Yang, P. P.; Li, J.; Vlachos, D. G.; Caratzoulas, S. Tuning active site flexibility by defect engineering of graphene ribbon edge-hosted Fe-N3 sites. Angew. Chem., Int. Ed. 2024, 63, e202311174.

    Article  CAS  Google Scholar 

  25. Li, Z. J.; Jang, H.; Qin, D. N.; Jiang, X. L.; Ji, X. Q.; Kim, M. G.; Zhang, L. J.; Liu, X. E.; Cho, J. Alloy-strain-output induced lattice dislocation in Ni3FeN/Ni3Fe ultrathin nanosheets for highly efficient overall water splitting. J. Mater. Chem. A 2021, 9, 4036–4043.

    Article  CAS  Google Scholar 

  26. Hou, Z. Q.; Cui, C. H.; Li, Y. N.; Gao, Y. J.; Zhu, D. M.; Gu, Y. F.; Pan, G. Y.; Zhu, Y. Q.; Zhang, T. Lattice-strain engineering for heterogenous electrocatalytic oxygen evolution reaction. Adv. Mater. 2023, 35, 2209876.

    Article  CAS  Google Scholar 

  27. Yang, X. B.; Wang, Y. Y.; Tong, X. L.; Yang, N. J. Stain engineering in electrocatalysts: Fundamentals, progress, and perspectives. Adv. Energy Mater. 2022, 12, 2102261.

    Article  CAS  Google Scholar 

  28. Wang, H. B.; Zhang, H.; Huang, Y.; Wang, H. Y.; Ozden, A.; Yao, K. L.; Li, H. M.; Guo, Q. Y.; Liu, Y. C.; Vomiero, A. et al. Strain in copper/ceria heterostructure promotes electrosynthesis of multicarbon products. ACS Nano 2023, 17, 346–354.

    Article  CAS  PubMed  Google Scholar 

  29. Yu, X. B.; Yan, F.; Zhao, Y.; Geng, B.; Ma, X. Z.; Wu, L. L.; Zhang, X. T.; Chen, Y. J. A heterostructure of interlayer-expanded 1T phase MoS2 and spherical MoO2 for efficient and stable hydrogen evolution. Appl. Catal. B Environ. 2024, 343, 123534.

    Article  CAS  Google Scholar 

  30. Hu, J.; Guo, T. Q.; Zhong, X. Y.; Li, J.; Mei, Y. J.; Zhang, C. X.; Feng, Y. B.; Sun, M. Z.; Meng, L. J.; Wang, Z. Y. et al. In situ reconstruction of high-entropy heterostructure catalysts for stable oxygen evolution electrocatalysis under industrial conditions. Adv. Mater. 2024, 36, 2310918

    Article  CAS  Google Scholar 

  31. You, M. S.; Xu, Y.; He, B. B.; Zhang, J.; Gui, L. Q.; Xu, J. M.; Zhou, W.; Zhao, L. Realizing robust and efficient acidic oxygen evolution by electronic modulation of 0D/2D CeO2 quantum dots decorated SrIrO3 nanosheets. Appl. Catal. B: Environ. 2022, 315, 121579.

    Article  CAS  Google Scholar 

  32. Kopelent, R.; Tereshchenko, A.; Guda, A.; Smolentsev, G.; Artiglia, L.; Sushkevich, V. L.; Bugaev, A.; Sadykov, I. I.; Baidya, T.; Bodnarchuk, M. et al. Enhanced reducibility of the ceria-tin oxide solid solution modifies the CO oxidation mechanism at the platinum-oxide interface. ACS Catal. 2021, 11, 9435–9449.

    Article  CAS  Google Scholar 

  33. Jia, S. Y.; Zhang, J. C.; Liu, Q. C.; Ma, C. N.; Tang, Y. W.; Sun, H. J. Competitive adsorption of oxygen-containing intermediates on ruthenium-tin solid-solution oxides for alkaline oxygen evolution. J. Mater. Chem. A 2023, 11, 23489–23497.

    Article  CAS  Google Scholar 

  34. Zhang, Y. X.; Dong, J.; Sun, T. T.; Zhang, X. H.; Chen, J. F.; Xu, L. B. Mo-doped mesoporous RuO2 spheres as high-performance acidic oxygen evolution reaction electrocatalyst. Small. 2024, 20, 2305889.

    Article  CAS  Google Scholar 

  35. Xu, Y. M.; Mao, Z. X.; Zhang, J. F.; Ji, J. P.; Zou, Y.; Dong, M. Y.; Fu, B.; Hu, M. Q.; Zhang, K. D.; Chen, Z. Y. et al. Strain-modulated Ru-O covalency in Ru-Sn oxide enabling efficient and stable water oxidation in acidic solution. Angew. Chem., Int. Ed. 2024, 63, e202316029.

    Article  CAS  Google Scholar 

  36. Long, X.; Zhao, B.; Zhao, Q. Q.; Wu, X. X.; Zhu, M. N.; Feng, R. F.; Shakouri, M.; Zhang, Y.; Xiao, X. X.; Zhang, J. J. et al. Ru-RuO2 nano-heterostructures stabilized by the sacrificing oxidation strategy of Mn3O4 substrate for boosting acidic oxygen evolution reaction. Appl. Catal. B: Environ. 2024, 343, 123559.

    Article  CAS  Google Scholar 

  37. Ma, R. P.; Wang, X.; Yang, X. L.; Li, Y.; Liu, C. P.; Ge, J. J.; Xing, W. Identification of active sites and synergistic effect in multicomponent carbon-based Ru catalysts during electrocatalytic hydrogen evolution. Nano Res. 2023, 16, 166–173.

    Article  CAS  Google Scholar 

  38. Yan, H. H.; Jiang, Z. Q.; Deng, B. L.; Wang, Y. J.; Jiang, Z. J. Ultrathin carbon coating and defect engineering promote RuO2 as an efficient catalyst for acidic oxygen evolution reaction with super-high durability. Adv. Energy Mater. 2023, 13, 2300152.

    Article  CAS  Google Scholar 

  39. Wang, J.; Yang, H.; Li, F.; Li, L. G.; Wu, J. B.; Liu, S. H.; Cheng, T.; Xu, Y.; Shao, Q.; Huang, X. Q. Single-site Pt-doped RuO2 hollow nanospheres with interstitial C for high-performance acidic overall water splitting. Sci. Adv. 2022, 8, eabl9271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, G. Q.; Yang, Y.; Zhang, X. L.; Li, H. H.; Yu, P. C.; Gao, M. R.; Yu, S. H. Porous tellurium-doped ruthenium dioxide nanotubes for enhanced acidic water oxidation. Small., in press, https://doi.org/10.1002/smll.202306914.

  41. Laha, S.; Lee, Y.; Podjaski, F.; Weber, D.; Duppel, V.; Schoop, L. M.; Pielnhofer, F.; Scheurer, C.; Müller, K.; Starke, U. et al. Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium. Adv. Energy Mater. 2019, 9, 1803795.

    Article  Google Scholar 

  42. Yoo, J. M.; Shin, H.; Chung, D. Y.; Sung, Y. E. Carbon shell on active nanocatalyst for stable electrocatalysis. Acc. Chem. Res. 2022, 55, 1278–1289.

    Article  CAS  PubMed  Google Scholar 

  43. Shan, J. Q.; Guo, C. X.; Zhu, Y. H.; Chen, S. M.; Song, L.; Jaroniec, M.; Zheng, Y.; Qiao, S. Z. Charge-redistribution-enhanced nanocrystalline Ru@IrOx electrocatalysts for oxygen evolution in acidic media. Chem. 2019, 5, 445–459.

    Article  CAS  Google Scholar 

  44. Jang, J.; Sharma, M.; Choi, D.; Kang, Y. S.; Kim, Y.; Min, J.; Sung, H.; Jung, N.; Yoo, S. J. Boosting fuel cell durability under shutdown/start-up conditions using a hydrogen oxidation-selective metal-carbon hybrid core-shell catalyst. ACS Appl. Mater. Interfaces 2019, 11, 27735–27742.

    Article  CAS  PubMed  Google Scholar 

  45. Yoo, T. Y.; Yoo, J. M.; Sinha, A. K.; Bootharaju, M. S.; Jung, E.; Lee, H. S.; Lee, B. H.; Kim, J.; Antink, W. H.; Kim, Y. M. et al. Direct synthesis of intermetallic platinum-alloy nanoparticles highly loaded on carbon supports for efficient electrocatalysis. J. Am. Chem. Soc. 2020, 142, 14190–14200.

    Article  CAS  PubMed  Google Scholar 

  46. Kim, J. Y.; Hong, D.; Lee, J. C.; Kim, H. G.; Lee, S.; Shin, S.; Kim, B.; Lee, H.; Kim, M.; Oh, J. et al. Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO2 reduction toward C2+ products. Nat. Commun. 2021, 12, 3765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xin, H.; Lin, L.; Li, R. T.; Li, D.; Song, T. Y.; Mu, R. T.; Fu, Q.; Bao, X. H. Overturning CO2 hydrogenation selectivity with high activity via reaction-induced strong metal-support interactions. J. Am. Chem. Soc. 2022, 144, 4874–4882.

    Article  CAS  PubMed  Google Scholar 

  48. Ge, R. X.; Wang, Y.; Li, Z. Z.; Xu, M.; Xu, S. M.; Zhou, H.; Ji, K. Y.; Chen, F. G.; Zhou, J. H.; Duan, H. H. Selective electrooxidation of biomass-derived alcohols to aldehydes in a neutral medium: Promoted water dissociation over a nickel-oxide-supported ruthenium single-atom catalyst. Angew. Chem., Int. Ed. 2022, 61, e202200211.

    Article  CAS  Google Scholar 

  49. Wu, X. K.; Wang, Z. C.; Zhang, D.; Qin, Y. N.; Wang, M. H.; Han, Y.; Zhan, T. R.; Yang, B.; Li, S. X.; Lai, J. P. et al. Solvent-free microwave synthesis of ultra-small Ru-Mo2C@CNT with strong metal-support interaction for industrial hydrogen evolution. Nat. Commun. 2021, 12, 4018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liang, Q. R.; Li, Q. Z.; Xie, L.; Zeng, H.; Zhou, S.; Huang, Y. N.; Yan, M.; Zhang, X.; Liu, T. Y.; Zeng, J. et al. Superassembly of surface-enriched Ru nanoclusters from trapping-bonding strategy for efficient hydrogen evolution. ACS Nano. 2022, 16, 7993–8004.

    Article  CAS  PubMed  Google Scholar 

  51. Kuznetsov, D. A.; Naeem, M. A.; Kumar, P. V.; Abdala, P. M.; Fedorov, A.; Müller, C. R. Tailoring lattice oxygen binding in ruthenium pyrochlores to enhance oxygen evolution activity. J. Am. Chem. Soc. 2020, 142, 7883–7888.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, T.; Wu, M. Y.; Yan, D. Y.; Mao, J.; Liu, H.; Hu, W. B.; Du, X. W.; Ling, T.; Qiao, S. Z. Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. Nano Energy. 2018, 43, 103–109.

    Article  Google Scholar 

  53. Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.

    Article  Google Scholar 

  54. Lei, F. C.; Sun, Y. F.; Liu, K. T.; Gao, S.; Liang, L.; Pan, B. C.; Xie, Y. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 2014, 136, 6826–6829.

    Article  CAS  PubMed  Google Scholar 

  55. Li, C.; Jang, H.; Kim, M. G.; Hou, L. Q.; Liu, X. E.; Cho, J. Ru-incorporated oxygen-vacancy-enriched MoO2 electrocatalysts for hydrogen evolution reaction. Appl. Catal. B: Environ. 2022, 307, 121204.

    Article  CAS  Google Scholar 

  56. Qiu, T. J.; Liang, Z. B.; Guo, W. H.; Gao, S.; Qu, C.; Tabassum, H.; Zhang, H.; Zhu, B. J.; Zou, R. Q.; Shao-Horn, Y. Highly exposed ruthenium-based electrocatalysts from bimetallic metal-organic frameworks for overall water splitting. Nano Energy. 2019, 58, 1–10.

    Article  CAS  Google Scholar 

  57. Kwon, J.; Sun, S.; Choi, S.; Lee, K.; Jo, S.; Park, K.; Kim, Y. K.; Park, H. B.; Park, H. Y.; Jang, J. H. et al. Tailored electronic structure of Ir in high entropy alloy for highly active and durable bifunctional electrocatalyst for water splitting under an acidic environment. Adv. Mater. 2023, 35, 2300091.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2022YFA1503002), the National Natural Science Foundation of China (Nos. 22271081 and 91961111), the Natural Science Foundation of Heilongjiang Province (No. ZD2021B003), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (No. UNPYSCT-2020004), and the Heilongjiang University Excellent Youth Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aiping Wu or Chungui Tian.

Electronic Supplementary Material

12274_2024_6696_MOESM1_ESM.pdf

Electronic Supplementary Material: Synergistic Ru/RuO2 heterojunctions stabilized by carbon coating as efficient and stable bifunctional electrocatalysts for acidic overall water splitting

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Fan, Y., Huang, Y. et al. Synergistic Ru/RuO2 heterojunctions stabilized by carbon coating as efficient and stable bifunctional electrocatalysts for acidic overall water splitting. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6696-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6696-0

Keywords

Navigation