Skip to main content
Log in

Synergistically coupling of Ni–Fe LDH arrays with hollow Co–Mo sulfide nanotriangles for highly efficient overall water splitting

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Developing bifunctional catalysts that can catalyze both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is pivotal to commercializing large-scale water splitting. Herein, a novel hollow nanotriangle composed of NiFe LDH-CoMoSx heterojunction (H-CMSx@NiFe LDH) is proposed as a highly efficient bifunctional electrocatalyst for both OER and HER. To fabricate a heterojunction system, ultra-thin nickel–iron layered double hydroxide (NiFe LDH) nanosheets are uniformly electrodeposited onto a metal–organic framework-derived hollow CoMoSx nanotriangle. The strong coupling of CoMoSx and NiFe LDH catalysts forms the intimate heterojunction interfaces to facilitate interfacial charge transfer, which is favorable to enhance the bifunctional catalytic activity. Moreover, the large void of CoMoSx nanotriangles and interconnected ultra-thin NiFe LDH nanosheets result in good electrolyte penetration and gas release. Therefore, the as-prepared H-CMSx@NiFe LDH on nickel foam (NF) exhibits an impressive catalytic activity and durability for OER and HER activities, delivering a current density of 100 mA·cm−2 at the small overpotentials of 214 and 299 mV in OER and HER, respectively. Meanwhile, H-CMSx@NiFe LDH/NF proves to be an effective electrode for an alkaline electrolyzer, as a voltage of only 1.99 V is enough to achieve a current density voltage of only 1.99 V is enough to achieve a current density of 400 mA·cm−2 with no degradation in performance over 50 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anantharaj S, Ede SR, Sakthikumar K, Karthick K, Mishra S, Kundu S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: a review. ACS Catal. 2016;6(12):8069. https://doi.org/10.1021/acscatal.6b02479.

    Article  CAS  Google Scholar 

  2. Peng X, Pi C, Zhang X, Li S, Huo K, Chu PK. Recent progress of transition metal nitrides for efficient electrocatalytic water splitting. Sustain Energy Fuels. 2019;3(2):366. https://doi.org/10.1039/C8SE00525G.

    Article  CAS  Google Scholar 

  3. Lin J, Yan Y, Li C, Si X, Wang H, Qi J, Cao J, Zhong Z, Fei W, Feng J. Bifunctional electrocatalysts based on Mo-doped NiCoP nanosheet arrays for overall water splitting. Nano-Micro Lett. 2019;11(1):55. https://doi.org/10.1007/s40820-019-0289-6.

    Article  CAS  Google Scholar 

  4. Zhang J, Bai X, Wang T, Xiao W, Xi P, Wang J, Gao D, Wang J. Bimetallic nickel cobalt sulfide as efficient electrocatalyst for Zn–air battery and water splitting. Nano-Micro Lett. 2019;11(1):2. https://doi.org/10.1007/s40820-018-0232-2.

    Article  CAS  Google Scholar 

  5. Jamesh M-I, Sun X. Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting—a review. J Power Sources. 2018;400:31. https://doi.org/10.1016/j.jpowsour.2018.07.125.

    Article  CAS  Google Scholar 

  6. Jiang Y, Lu Y. Designing transition-metal-boride-based electrocatalysts for applications in electrochemical water splitting. Nanoscale. 2020;12(17):9327. https://doi.org/10.1039/D0NR01279C.

    Article  CAS  Google Scholar 

  7. Guan S, Fu X, Lao Z, Jin C, Peng Z. NiS–MoS2 hetero-nanosheet array electrocatalysts for efficient overall water splitting. Sustain Energy Fuels. 2019;3(8):2056. https://doi.org/10.1039/C9SE00228F.

    Article  CAS  Google Scholar 

  8. Gorlin Y, Jaramillo TF. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J Am Chem Soc. 2010;132(39):13612. https://doi.org/10.1021/ja104587v.

    Article  CAS  Google Scholar 

  9. Li J, Xu W, Luo J, Zhou D, Zhang D, Wei L, Xu P, Yuan D. Synthesis of 3D hexagram-like cobalt–manganese sulfides nanosheets grown on nickel foam: a bifunctional electrocatalyst for overall water splitting. Nano-Micro Lett. 2017;10(1):6. https://doi.org/10.1007/s40820-017-0160-6.

    Article  CAS  Google Scholar 

  10. Zhai Z, Li C, Zhang L, Wu H-C, Zhang L, Tang N, Wang W, Gong J. Dimensional construction and morphological tuning of heterogeneous MoS2/NiS electrocatalysts for efficient overall water splitting. J Mater Chem A. 2018;6(21):9833. https://doi.org/10.1039/C8TA03304H.

    Article  CAS  Google Scholar 

  11. Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc. 2005;127(15):5308. https://doi.org/10.1021/ja0504690.

    Article  CAS  Google Scholar 

  12. Yu L, Xia BY, Wang X, Lou XW. General formation of M-MoS3 (M = Co, Ni) hollow structures with enhanced electrocatalytic activity for hydrogen evolution. Adv Mater. 2016;28(1):92. https://doi.org/10.1002/adma.201504024.

    Article  CAS  Google Scholar 

  13. Staszak-Jirkovský J, Malliakas CD, Lopes PP, Danilovic N, Kota SS, Chang K-C, Genorio B, Strmcnik D, Stamenkovic VR, Kanatzidis MG, Markovic NM. Design of active and stable Co–Mo–Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat Mater. 2016;15(2):197. https://doi.org/10.1038/nmat4481.

    Article  CAS  Google Scholar 

  14. Dai X, Du K, Li Z, Liu M, Ma Y, Sun H, Zhang X, Yang Y. Co-doped MoS2 nanosheets with the dominant CoMoS phase coated on carbon as an excellent electrocatalyst for hydrogen evolution. ACS Appl Mater Interfaces. 2015;7(49):27242. https://doi.org/10.1021/acsami.5b08420.

    Article  CAS  Google Scholar 

  15. Li Y, Yin Z, Cui M, Liu X, Xiong J, Chen S, Ma T. Interface engineering of transitional metal sulfide–MoS2 heterostructure composites as effective electrocatalysts for water-splitting. J Mater Chem A. 2021;9(4):2070. https://doi.org/10.1039/D0TA10815D.

    Article  CAS  Google Scholar 

  16. Bao J, Zhou Y, Zhang Y, Sheng X, Wang Y, Liang S, Guo C, Yang W, Zhuang T, Hu Y. Engineering water splitting sites in three-dimensional flower-like Co–Ni–P/MoS2 heterostructural hybrid spheres for accelerating electrocatalytic oxygen and hydrogen evolution. J Mater Chem A. 2020;8(42):22181. https://doi.org/10.1039/D0TA07953G.

    Article  CAS  Google Scholar 

  17. Xiong Q, Zhang X, Wang H, Liu G, Wang G, Zhang H, Zhao H. One-step synthesis of cobalt-doped MoS2 nanosheets as bifunctional electrocatalysts for overall water splitting under both acidic and alkaline conditions. Chem Commun. 2018;54(31):3859. https://doi.org/10.1039/C8CC00766G.

    Article  CAS  Google Scholar 

  18. Zhang X, Zhou F, Zhang S, Liang Y, Wang R. Engineering MoS2 basal planes for hydrogen evolution via synergistic ruthenium doping and nanocarbon hybridization. Adv Sci. 2019;6(10):1900090. https://doi.org/10.1002/advs.201900090.

    Article  CAS  Google Scholar 

  19. Zhang B, Liu J, Wang J, Ruan Y, Ji X, Xu K, Chen C, Wan H, Miao L, Jiang J. Interface engineering: the Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy. 2017;37:74. https://doi.org/10.1016/j.nanoen.2017.05.011.

    Article  CAS  Google Scholar 

  20. Liu S, Zhang H, Hu E, Zhu T, Zhou C, Huang Y, Ling M, Gao X, Lin Z. Boosting oxygen evolution activity of NiFe-LDH using oxygen vacancies and morphological engineering. J Mater ChemA.2021;9(41):23697.https://doi.org/10.1039/D1TA06263H.

    Article  CAS  Google Scholar 

  21. Ren L, Wang C, Li W, Dong R, Sun H, Liu N, Geng B. Heterostructural NiFe-LDH@Ni3S2 nanosheet arrays as an efficient electrocatalyst for overall water splitting. Electrochim Acta. 2019;318:42. https://doi.org/10.1016/j.electacta.2019.06.060.

    Article  CAS  Google Scholar 

  22. Chen W, Wu B, Wang Y, Zhou W, Li Y, Liu T, Xie C, Xu L, Du S, Song M, Wang D, Liu Y, Li Y, Liu J, Zou Y, Chen R, Chen C, Zheng J, Li Y, Chen J, Wang S. Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting. Energy Environ Sci. 2021;14(12):642. https://doi.org/10.1039/D1EE01395E.

    Article  Google Scholar 

  23. Tang Y, Liu Q, Dong L, Wu HB, Yu X-Y. Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction. Appl Catal B. 2020;266:118627.https://doi.org/10.1016/j.apcatb.2020.118627.

    Article  CAS  Google Scholar 

  24. Wang Q, Shang L, Shi R, Zhang X, Zhao Y, Waterhouse GIN, Wu L-Z, Tung C-H, Zhang T. NiFe layered double hydroxide nanoparticles on Co, N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc–air batteries. Adv Energy Mater. 2017;7(21):1700467. https://doi.org/10.1002/aenm.201700467.

    Article  CAS  Google Scholar 

  25. Lu X, Xue H, Gong H, Bai M, Tang D, Ma R, Sasaki T. 2D layered double hydroxide nanosheets and their derivatives toward efficient oxygen evolution reaction. Nano-Micro Lett. 2020;12(1):86. https://doi.org/10.1007/s40820-020-00421-5.

    Article  CAS  Google Scholar 

  26. Zhang B, Zhu C, Wu Z, Stavitski E, Lui YH, Kim T-H, Liu H, Huang L, Luan X, Zhou L, Jiang K, Huang W, Hu S, Wang H, Francisco JS. Integrating Rh species with NiFe-layered double hydroxide for overall water splitting. Nano Lett. 2020;20(1):136. https://doi.org/10.1021/acs.nanolett.9b03460.

    Article  CAS  Google Scholar 

  27. Zhang H, Li X, Hähnel A, Naumann V, Lin C, Azimi S, Schweizer SL, Maijenburg AW, Wehrspohn RB. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv Funct Mater. 2018;28(14):1706847. https://doi.org/10.1002/adfm.201706847.

    Article  CAS  Google Scholar 

  28. Feng X, Shi Y, Shi J, Hao L, Hu Z. Superhydrophilic 3D peony flower-like Mo-doped Ni2S3@NiFe LDH heterostructure electrocatalyst for accelerating water splitting. Int J Hydrog Energy. 2021;46(7):5169.https://doi.org/10.1016/j.ijhydene.2020.11.018.

    Article  CAS  Google Scholar 

  29. Jia Y, Zhang L, Gao G, Chen H, Wang B, Zhou J, Soo MT, Hong M, Yan X, Qian G, Zou J, Du A, Yao X. A heterostructure coupling of exfoliated Ni–Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv Mater. 2017;29(17):1700017. https://doi.org/10.1002/adma.201700017.

    Article  CAS  Google Scholar 

  30. Zhang X, Qiu Y, Li Q, Liu F, Ji X, Liu J. Facile construction of well-defined hierarchical NiFe2O4/NiFe layered double hydroxides with a built-in electric field for accelerating water splitting at the high current density. Int J Hydrog Energy. 2022;47(97):40826. https://doi.org/10.1016/j.ijhydene.2022.09.171.

    Article  CAS  Google Scholar 

  31. Liu K-K, Zhang W, Lee Y-H, Lin Y-C, Chang M-T, Su C-Y, Chang C-S, Li H, Shi Y, Zhang H, Lai C-S, Li L-J. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012;12(3):1538. https://doi.org/10.1021/nl2043612.

    Article  CAS  Google Scholar 

  32. Shit S, Bolar S, Murmu NC, Kuila T. Minimal lanthanum-doping triggered enhancement in bifunctional water splitting activity of molybdenum oxide/sulfide heterostructure through structural evolution. Chem Eng J. 2022;428:131131. https://doi.org/10.1016/j.cej.2021.131131.

    Article  CAS  Google Scholar 

  33. Hu L, Zeng X, Wei X, Wang H, Wu Y, Gu W, Shi L, Zhu C. Interface engineering for enhancing electrocatalytic oxygen evolution of NiFe LDH/NiTe heterostructures. Appl Catal B. 2020;273:119014. https://doi.org/10.1016/j.apcatb.2020.119014.

    Article  CAS  Google Scholar 

  34. Wan C, Jin J, Wei X, Chen S, Zhang Y, Zhu T, Qu H. Inducing the SnO2-based electron transport layer into NiFe LDH/NF as efficient catalyst for OER and methanol oxidation reaction. J Mater Sci Technol. 2022;124:102. https://doi.org/10.1016/j.jmst.2022.01.022.

    Article  CAS  Google Scholar 

  35. Yu J, Liu Z, Yu F, Bao W, Peng B, Wang G, Zhang L, Xu Y, Wang F. Enhanced photoelectrochemical performance of ZnO/NiFe-layered double hydroxide for water splitting: experimental and photo-assisted density functional theory calculations. J Colloid Interface Sci. 2022;623:285. https://doi.org/10.1016/j.jcis.2022.05.001.

    Article  CAS  Google Scholar 

  36. Gao R, Yan D. Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Res. 2018;11(4):1883. https://doi.org/10.1007/s12274-017-1806-x.

    Article  CAS  Google Scholar 

  37. Huang Z, Chen Z, Chen Z, Lv C, Humphrey MG, Zhang C. Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy. 2014;9:373. https://doi.org/10.1016/j.nanoen.2014.08.013.

    Article  CAS  Google Scholar 

  38. Wen Q, Yang K, Huang D, Cheng G, Ai X, Liu Y, Fang J, Li H, Yu L, Zhai T. Schottky heterojunction nanosheet array achieving high-current-density oxygen evolution for industrial water splitting electrolyzers. Adv Energy Mater. 2021;11(46):2102353. https://doi.org/10.1002/aenm.202102353.

    Article  CAS  Google Scholar 

  39. Xu R, Wu R, Shi Y, Zhang J, Zhang B. Ni3Se2 nanoforest/Ni foam as a hydrophilic, metallic, and self-supported bifunctional electrocatalyst for both H2 and O2 generations. Nano Energy. 2016;24:103. https://doi.org/10.1016/j.nanoen.2016.04.006.

    Article  CAS  Google Scholar 

  40. Yu L, Yang JF, Guan BY, Lu Y, Lou XWD. Hierarchical hollow nanoprisms based on ultrathin Ni-Fe layered double hydroxide nanosheets with enhanced electrocatalytic activity towards oxygen evolution. Angew Chem Int Ed. 2018;130(1):178. https://doi.org/10.1002/ange.201710877.

    Article  Google Scholar 

  41. Tan L, Yu J, Wang C, Wang H, Liu X, Gao H, Xin L, Liu D, Hou W, Zhan T. Partial sulfidation strategy to NiFe-LDH@FeNi2S4 heterostructure enable high-performance water/seawater oxidation. Adv Funct Mater. 2022;32(29):2200951. https://doi.org/10.1002/adfm.202200951.

    Article  CAS  Google Scholar 

  42. Gao Z-W, Liu J-Y, Chen X-M, Zheng X-L, Mao J, Liu H, Ma T, Li L, Wang W-C, Du X-W. Engineering NiO/NiFe LDH intersection to bypass scaling relationship for oxygen evolution reaction via dynamic tridimensional adsorption of intermediates. Adv Mater. 2019;31(11):1804769. https://doi.org/10.1002/adma.201804769.

    Article  CAS  Google Scholar 

  43. Zhang J, Guo S, Xiao B, Lin Z, Yan L, Du D, Shen S. Ni-Mo based mixed-phase polyionic compounds nanorod arrays on nickel foam as advanced bifunctional electrocatalysts for water splitting. Chem Eng J. 2021;416:129127. https://doi.org/10.1016/j.cej.2021.129127.

    Article  CAS  Google Scholar 

  44. Guan C, Xiao W, Wu H, Liu X, Zang W, Zhang H, Ding J, Feng YP, Pennycook SJ, Wang J. Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy. 2018;48:73. https://doi.org/10.1016/j.nanoen.2018.03.034.

    Article  CAS  Google Scholar 

  45. Huang L, Chen D, Luo G, Lu Y-R, Chen C, Zou Y, Dong C-L, Li Y, Wang S. Zirconium-regulation-induced bifunctionality in 3D cobalt–iron oxide nanosheets for overall water splitting. Adv Mater. 2019;31(28):1901439. https://doi.org/10.1002/adma.201901439.

    Article  CAS  Google Scholar 

  46. Zhu M, Sun Z, Fujitsuka M, Majima T. Z-scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light. Angew Chem Int Ed. 2018;57(8):2160. https://doi.org/10.1002/anie.201711357.

    Article  CAS  Google Scholar 

  47. Gao Y, Zhang D, Li J, Gong H, Jiang C, Xue H, Huang X, Wang T, He J. The core/shell structure P doped MoS2@Ni3S2 nanorods array for high current density hydrogen evolution in alkaline and acidic electrolyte. Chem Eur J. 2022;28(71):e202202410. https://doi.org/10.1002/chem.202202410.

    Article  CAS  Google Scholar 

  48. Li W, Feng B, Yi L, Li J, Hu W. Highly efficient alkaline water splitting with Ru-doped Co−V layered double hydroxide nanosheets as a bifunctional electrocatalyst. Chemsuschem. 2021;14(2):730. https://doi.org/10.1002/cssc.202002509.

    Article  CAS  Google Scholar 

  49. Sun H, Zhang W, Li J-G, Li Z, Ao X, Xue K-H, Ostrikov KK, Tang J, Wang C. Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis. Appl Catal B. 2021;284:119740. https://doi.org/10.1016/j.apcatb.2020.119740.

    Article  CAS  Google Scholar 

  50. Liu Y, Feng Q, Liu W, Li Q, Wang Y, Liu B, Zheng L, Wang W, Huang L, Chen L, Xiong X, Lei Y. Boosting interfacial charge transfer for alkaline hydrogen evolution via rational interior Se modification. Nano Energy. 2021;81:105641. https://doi.org/10.1016/j.nanoen.2020.105641.

    Article  CAS  Google Scholar 

  51. Wang B, Jiao S, Wang Z, Lu M, Chen D, Kang Y, Pang G, Feng S. Rational design of NiFe LDH@Ni3N nano/microsheet arrays as a bifunctional electrocatalyst for overall water splitting. J Mater Chem A. 2020;8(33):17202. https://doi.org/10.1039/D0TA01966F.

    Article  CAS  Google Scholar 

  52. Yu L, Zhou H, Sun J, Qin F, Yu F, Bao J, Yu Y, Chen S, Ren Z. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ Sci. 2017;10(8):1820. https://doi.org/10.1039/C7EE01571B.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Research Foundation of Korea (NRF) from the Korean government (No. 2020R1C1C1003375) and Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (No. P00124539) (HRD Program for Industrial Innovation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Keun Park.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1099 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.J., Park, SK. Synergistically coupling of Ni–Fe LDH arrays with hollow Co–Mo sulfide nanotriangles for highly efficient overall water splitting. Rare Met. 43, 522–532 (2024). https://doi.org/10.1007/s12598-023-02425-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02425-7

Keywords

Navigation