Skip to main content
Log in

Ni-Cu bimetallic alloy anchored on nitrogen-doped carbon nanotubes for CO2-to-CH4 electrochemical conversion

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrocatalytic CO2 reduction to CH4 remains challenging due to multi-electron transfer and intermediates adsorption. Herein, we synthesized electrocatalysts by growing Ni-Cu alloy structure on nitrogen-doped carbon nanotubes (NixCuy-NCNT) for electrocatalytic CO2 reduction reaction (CO2RR) via hydrothermal method followed by pyrolysis. The optimized Ni1Cu1-NCNT demonstrated a superior CO2RR performance, achieving 99.7% \(\text{FE}_{\text{CH}_{4}}\) (FE = Faradaic efficiency) and 11.54 mA • cm−2 current density at −1.2 V vs. reversible hydrogen electrode (RHE), which outperformed single metal counterparts. Its outstanding performance was due to the electrons transferred from Cu to Ni and Ni-Cu alloy shifted the d-band center toward the Fermi level, which was more conducive to the intermediate formation. In situ electrochemical attenuated total reflection (EC-ATR) and density functional theory (DFT) calculations revealed the appearance of *CHO intermediate and the pathway during the CO2RR process. The design of the bimetallic electrocatalyst in this study provides a new perspective for the highly selective reduction of CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

    Article  CAS  Google Scholar 

  2. Rasul, S.; Anjum, D. H.; Jedidi, A.; Minenkov, Y.; Cavallo, L.; Takanabe, K. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angew. Chem., Int. Ed. 2015, 54, 2146–2150.

    Article  CAS  Google Scholar 

  3. Lee, W.; Kim, Y. E.; Youn, M. H.; Jeong, S. K.; Park, K. T. Catholyte-free electrocatalytic CO2 reduction to formate. Angew. Chem., Int. Ed. 2018, 57, 6883–6887.

    Article  CAS  Google Scholar 

  4. Wu, J. J.; Sharifi, T.; Gao, Y.; Zhang, T. Y.; Ajayan, P. M. Emerging carbon-based heterogeneous catalysts for electrochemical reduction of carbon dioxide into value-added chemicals. Adv. Mater. 2019, 31, 1804257.

    Article  Google Scholar 

  5. Zhang, T. Y.; Li, W. T.; Huang, K.; Guo, H. Z.; Li, Z. Y.; Fang, Y. B.; Yadav, R. M.; Shanov, V.; Ajayan, P. M.; Wang, L. et al. Regulation of functional groups on graphene quantum dots directs selective CO2 to CH4 conversion. Nat. Commun. 2021, 12, 5265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, Y. H.; Wang, Z. Y.; Dinh, C. T.; Li, J.; Ozden, A.; Golam Kibria, M.; Seifitokaldani, A.; Tan, C. S.; Gabardo, C. M.; Luo, M. C. et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 2019, 3, 98–106.

    Article  Google Scholar 

  7. Qiu, Y. L.; Zhong, H. X.; Zhang, T. T.; Xu, W. B.; Li, X. F.; Zhang, H. M. Copper electrode fabricated via pulse electrodeposition: Toward high methane selectivity and activity for CO2 electroreduction. ACS Catal. 2017, 7, 6302–6310.

    Article  CAS  Google Scholar 

  8. Hu, Q.; Han, Z.; Wang, X. D.; Li, G. M.; Wang, Z. Y.; Huang, X. W.; Yang, H. P.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H. et al. Facile synthesis of sub-nanometric copper clusters by double confinement enables selective reduction of carbon dioxide to methane. Angew. Chem., Int. Ed. 2020, 59, 19054–19059.

    Article  CAS  Google Scholar 

  9. Yi, J. D.; Xie, R. K.; Xie, Z. L.; Chai, G. L.; Liu, T. F.; Chen, R. P.; Huang, Y. B.; Cao, R. Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: Stabilizing key intermediates with hydrogen bonding. Angew. Chem., Int. Ed. 2020, 59, 23641–23648.

    Article  CAS  Google Scholar 

  10. Zhi, X.; Jiao, Y.; Zheng, Y.; Vasileff, A.; Qiao, S. Z. Selectivity roadmap for electrochemical CO2 reduction on copper-based alloy catalysts. Nano Energy 2020, 71, 104601.

    Article  CAS  Google Scholar 

  11. Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

    Article  CAS  PubMed  Google Scholar 

  12. Shan, J. J.; Sun, K.; Li, H. Y.; Xu, P.; Sun, J. M.; Wang, Z. J. Composition regulation and defects introduction via amorphous CuEu alloy shell for efficient CO2 electroreduction toward methane. J. CO2 Utili. 2020, 41, 101285.

    Article  CAS  Google Scholar 

  13. Wang, Z. J.; Yuan, Q.; Shan, J. J.; Jiang, Z. H.; Xu, P.; Hu, Y. F.; Zhou, J. G.; Wu, L. N.; Niu, Z. Z.; Sun, J. M. et al. Highly selective electrocatalytic reduction of CO2 into methane on Cu-Bi nanoalloys. J. Phys. Chem. Lett. 2020, 11, 7261–7266.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, J.; Zhang, P.; Yuan, T. H.; Cheng, D. F.; Zhen, S. Y.; Gao, H.; Wang, T.; Zhao, Z. J.; Gong, J. L. Modulation of *CHxO adsorption to facilitate electrocatalytic reduction of CO2 to CH4 over Cu-based catalysts. J. Am. Chem. Soc. 2023, 145, 6622–6627.

    Article  CAS  PubMed  Google Scholar 

  15. Xu, C. C.; Vasileff, A.; Jin, B.; Wang, D.; Xu, H. L.; Zheng, Y.; Qiao, S. Z. Graphene-encapsulated nickel-copper bimetallic nanoparticle catalysts for electrochemical reduction of CO2 to CO. Chem. Commun. 2020, 56, 11275–11278.

    Article  CAS  Google Scholar 

  16. Ren, Y.; Bai, Y. J.; Wang, G. X.; Liu, Y. J.; Mou, C. C.; Chen, J. Y.; Wei, B. H.; Wang, H.; Sun, Y. H. Cu- Ni alloy nanoparticles anchored on nitrogen-doped carbon nanotubes for efficient CO2 electroreduction to CO. Energy Fuels 2023, 37, 9289–9296.

    Article  CAS  Google Scholar 

  17. Song, Y. F.; Mao, J. N.; Zhu, C.; Li, S. J.; Li, G. H.; Dong, X.; Jiang, Z.; Chen, W.; Wei, W. Ni nanoclusters anchored on Ni-N-C sites for CO2 electroreduction at high current densities. ACS Appl. Mater. Interfaces 2023, 15, 10785–10794.

    Article  CAS  PubMed  Google Scholar 

  18. Chen, S. B.; Liao, J. H.; Zhou, Z. N.; Yang, S. Y.; Gao, Q. Z.; Cai, X.; Peng, F.; Fang, Y. P.; Zhang, S. Boosting photocatalytic hydrogen evolution using a noble-metal-free co-catalyst: CuNi@C with oxygen-containing functional groups. Appl. Catal. B: Environ. 2021, 291, 120139.

    Article  CAS  Google Scholar 

  19. Gao, S. S.; Liu, Y. F.; Xie, Z. Y.; Qiu, Y.; Zhuo, L. C.; Qin, Y. J.; Ren, J. Q.; Zhang, S. S.; Hu, G. Z.; Luo, J. et al. Metal-free bifunctional ordered mesoporous carbon for reversible Zn-CO2 batteries. Small Methods 2021, 5, 2001039.

    Article  CAS  Google Scholar 

  20. Chen, X. L.; Ma, L. S.; Su, W. Y.; Ding, L. F.; Zhu, H. B.; Yang, H. ZIF-derived bifunctional Cu@Cu-N-C composite electrocatalysts towards efficient electroreduction of oxygen and carbon dioxide. Electrochim. Acta 2020, 331, 135273.

    Article  CAS  Google Scholar 

  21. Jung, H.; Lee, S. Y.; Won, D. H.; Kim, K. J.; Chae, S. Y.; Oh, H. S.; Min, B. K.; Hwang, Y. J. Understanding selective reduction of CO2 to CO on modified carbon electrocatalysts. ChemElectroChem 2018, 5, 1615–1621.

    Article  CAS  Google Scholar 

  22. Zhang, B. S.; Xu, W. W.; Lu, Z. Y.; Sun, J. Recent progress on carbonaceous material engineering for electrochemical hydrogen peroxide generation. Trans. Tianjin Univ. 2020, 26, 188–196.

    Article  CAS  Google Scholar 

  23. Wu, C. Q.; Zhu, J.; Wang, H.; Wang, G. J.; Chen, T.; Tan, Y. W. Porous Ni1-xCuxO nanowire arrays as noble-metal-free highperformance catalysts for ammonia-borane electrooxidation. ACS Catal. 2020, 10, 721–735.

    Article  CAS  Google Scholar 

  24. Torres-Ochoa, J. A.; Cabrera-German, D.; Cortazar-Martinez, O.; Bravo-Sanchez, M.; Gomez-Sosa, G.; Herrera-Gomez, A. Peak-fitting of Cu 2p photoemission spectra in Cu0, Cu1+, and Cu2+ oxides: A method for discriminating Cu0 from Cu1+. Appl. Surf. Sci. 2023, 622, 156960.

    Article  CAS  Google Scholar 

  25. Xu, X.; Guo, Y.; Bloom, B. P.; Wei, J. J.; Li, H. Y.; Li, H. L.; Du, Y. K.; Zeng, Z.; Li, L. Q.; Waldeck, D. H. Elemental core level shift in high entropy alloy nanoparticles via X-ray photoelectron spectroscopy analysis and first-principles calculation. ACS Nano 2020, 14, 17704–17712.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, P.; Li, Y. K.; Zhang, Y. S.; Hou, R. H.; Zhang, X. L.; Xue, C.; Wang, S. B.; Zhu, B. C.; Li, N.; Shao, G. S. Photogenerated electron transfer process in heterojunctions: In situ irradiation XPS. Small Methods 2020, 4, 2000214.

    Article  CAS  Google Scholar 

  27. Chhetri, M.; Wan, M. Y.; Jin, Z. H.; Yeager, J.; Sandor, C.; Rapp, C.; Wang, H.; Lee, S.; Bodenschatz, C. J.; Zachman, M. J. et al. Dual-site catalysts featuring platinum-group-metal atoms on copper shapes boost hydrocarbon formations in electrocatalytic CO2 reduction. Nat. Commun. 2023, 14, 3075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jeon, H. S.; Timoshenko, J.; Scholten, F.; Sinev, I.; Herzog, A.; Haase, F. T.; Roldan Cuenya, B. Operando insight into the correlation between the structure and composition of CuZn nanoparticles and their selectivity for the electrochemical CO2 reduction. J. Am. Chem. Soc. 2019, 141, 19879–19887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhu, W. J.; Zhang, L.; Yang, P. P.; Chang, X. X.; Dong, H.; Li, A.; Hu, C. L.; Huang, Z. Q.; Zhao, Z. J.; Gong, J. L. Morphological and compositional design of Pd-Cu bimetallic nanocatalysts with controllable product selectivity toward CO2 electroreduction. Small 2018, 14, 1703314.

    Article  Google Scholar 

  30. Guo, X.; Zhang, Y. X.; Deng, C.; Li, X. Y.; Xue, Y. F.; Yan, Y. M.; Sun, K. N. Composition dependent activity of Cu-Pt nanocrystals for electrochemical reduction of CO2. Chem. Commun. 2015, 51, 1345–1348.

    Article  CAS  Google Scholar 

  31. Xuan, X. X.; Cheng, J.; Yang, X.; Zhou, J. H. Highly selective electrochemical reduction of CO2 to CH4 over vacancy-metal-nitrogen sites in an artificial photosynthetic cell. ACS Sustainable Chem. Eng. 2020, 8, 1679–1686.

    Article  CAS  Google Scholar 

  32. Ide, K.; Kunimoto, M.; Miyoshi, K.; Takano, K.; Matsuoka, K.; Homma, T. Surface pH effects on catalytic behavior of pyridinic nitrogen on nitrogen-doped carbon nanotube in CO2 electrochemical reduction. Electrochemistry 2023, 91, 027003.

    Article  CAS  Google Scholar 

  33. Wu, J. J.; Yadav, R. M.; Liu, M. J.; Sharma, P. P.; Tiwary, C. S.; Ma, L. L.; Zou, X. L.; Zhou, X. D.; Yakobson, B. I.; Lou, J. et al. Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes. ACS Nano 2015, 9, 5364–5371.

    Article  CAS  PubMed  Google Scholar 

  34. Hu, J.; Li, Y. Y.; Zhen, Y. P.; Chen, M. S.; Wan, H. L. In situ FTIR and ex situ XPS/HS-LEIS study of supported Cu/Al2O3 and Cu/ZnO catalysts for CO2 hydrogenation. Chin. J. Catal. 2021, 42, 367–375

    Article  CAS  Google Scholar 

  35. Zhu, W. J.; Zhang, L.; Liu, S. H.; Li, A.; Yuan, X. T.; Hu, C. L.; Zhang, G.; Deng, W. Y.; Zang, K. T.; Luo, J. et al. Enhanced CO2 electroreduction on neighboring Zn/Co monomers by electronic effect. Angew. Chem., Int. Ed. 2020, 59, 12664–12668.

    Article  CAS  Google Scholar 

  36. Zhu, S. Q.; Jiang, B.; Cai, W. B.; Shao, M. H. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J. Am. Chem. Soc. 2017, 139, 15664–15667.

    Article  CAS  PubMed  Google Scholar 

  37. Sheng, H.; Oh, M. H.; Osowiecki, W. T.; Kim, W.; Alivisatos, A. P.; Frei, H. Carbon dioxide dimer radical anion as surface intermediate of photoinduced CO2 reduction at aqueous Cu and CdSe nanoparticle catalysts by rapid-scan FT-IR spectroscopy. J. Am. Chem. Soc. 2018, 140, 4363–1371.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao, J.; Wang, Y.; Li, Y. X.; Yue, X.; Wang, C. Y. Phase-dependent enhancement for CO2 photocatalytic reduction over CeO2/TiO2 catalysts. Catal. Sci. Technol. 2016, 6, 7967–7975.

    Article  CAS  Google Scholar 

  39. Yao, X. J.; Kong, T. T.; Chen, L.; Ding, S. M.; Yang, F. M.; Dong, L. Enhanced low-temperature NH3-SCR performance of MnOx/CeO2 catalysts by optimal solvent effect. Appl. Surf. Sci. 2017, 420, 407–415.

    Article  CAS  Google Scholar 

  40. Kong, X. D.; Wang, C.; Zheng, H.; Geng, Z. G.; Bao, J.; Zeng, J. Enhance the activity of multi-carbon products for Cu via P doping towards CO2 reduction. Sci. China Chem. 2021, 64, 1096–1102.

    Article  CAS  Google Scholar 

  41. Zhu, D. D.; Chen, M. J.; Huang, Y.; Li, R.; Huang, T. T.; Cao, J. J.; Shen, Z. X.; Lee, S. C. FeCo alloy encased in nitrogen-doped carbon for efficient formaldehyde removal: Preparation, electronic structure, and d-band center tailoring. J. Hazard. Mater. 2022, 424, 127593.

    Article  CAS  PubMed  Google Scholar 

  42. Jin, S.; Hao, Z. M.; Zhang, K.; Yan, Z. H.; Chen, J. Advances and challenges for the electrochemical reduction of CO2 to CO: From fundamentals to industrialization. Angew. Chem., Int. Ed. 2021, 60, 20627–20648.

    Article  CAS  Google Scholar 

  43. Garg, S.; Li, M. R.; Weber, A. Z.; Ge, L.; Li, L. Y.; Rudolph, V.; Wang, G. X.; Rufford, T. E. Advances and challenges in electrochemical CO2 reduction processes: An engineering and design perspective looking beyond new catalyst materials. J. Mater. Chem. A 2020, 8, 1511–1544.

    Article  CAS  Google Scholar 

  44. Fan, J.; Han, N.; Li, Y. G. Electrochemical carbon dioxide reduction in flow cells. J. Electrochem. 2020, 26, 510–520.

    CAS  Google Scholar 

  45. Lai, W. C.; Qiao, Y.; Zhang, J. W.; Lin, Z. Q.; Huang, H. W. Design strategies for markedly enhancing energy efficiency in the electrocatalytic CO2 reduction reaction. Energy Environ. Sci. 2022, 15, 3603–3629.

    Article  CAS  Google Scholar 

  46. Yuan, L.; Zeng, S. J.; Zhang, X. P.; Ji, X. Y.; Zhang, S. J. Advances and challenges of electrolyzers for large-scale CO2 electroreduction. Mater. Rep. Energy 2023, 3, 100177.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52170065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Jing, C. & Wang, J. Ni-Cu bimetallic alloy anchored on nitrogen-doped carbon nanotubes for CO2-to-CH4 electrochemical conversion. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6694-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6694-2

Keywords

Navigation