Skip to main content
Log in

Enhance the activity of multi-carbon products for Cu via P doping towards CO2 reduction

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Electronic structure engineering is a powerful method to tailor the behavior of adsorbed intermediates on the surface of catalysts, thus regulating catalytic activity towards CO2 electroreduction. Herein, we prepared a series of P-doped Cu catalysts for CO2 electroreduction into multi-carbon (C2+) products by regulating the surface electronic structure of Cu. The introduction of P could stabilize the surface Cuδ+ species, enhancing the activity for C2+ products via adjusting the adsorbed strength of the CO intermediates (*CO). When the molar ratio of P to Cu was 8.3%, the catalyst exhibited a Faradaic efficiency of 64% for C2+ products, which was 1.9 times as high as that (33%) for Cu catalysts at the applied current density of 210 mA cm−2. Notably, at the applied current density of 300 mA cm−2, the P-doped Cu catalyst with the molar ratio of P to Cu of 8.3% exhibited the highest partial current density for C2+ products of 176 mA cm−2, whereas the partial current density for C2+ products over the Cu catalyst was only 84 mA cm−2. Mechanistic studies revealed that modulating the molar ratios of P to Cu regulated the adsorbed strength of *CO. A moderate adsorbed strength of *CO induced by appropriate P doping was responsible for the facilitated C-C coupling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Francke R, Schille B, Roemelt M. Chem Rev, 2018, 118: 4631–4701

    Article  CAS  Google Scholar 

  2. Ghausi MA, Xie J, Li Q, Wang X, Yang R, Wu M, Wang Y, Dai L. Angew Chem Int Ed, 2018, 57: 13135–13139

    Article  CAS  Google Scholar 

  3. Lu L, Sun X, Ma J, Zhu Q, Wu C, Yang D, Han B. Sci China Chem, 2018, 61: 228–235

    Article  CAS  Google Scholar 

  4. Kim C, Dionigi F, Beermann V, Wang X, Möller T, Strasser P. Adv Mater, 2019, 31: 1805617

    Article  Google Scholar 

  5. Ross MB, Li Y, De Luna P, Kim D, Sargent EH, Yang P. Joule, 2019, 3: 257–264

    Article  CAS  Google Scholar 

  6. Ye K, Cao A, Shao J, Wang G, Si R, Ta N, Xiao J, Wang G. Sci Bull, 2020, 65: 711–719

    Article  CAS  Google Scholar 

  7. Li J, Chen G, Zhu Y, Liang Z, Pei A, Wu CL, Wang H, Lee HR, Liu K, Chu S, Cui Y. Nat Catal, 2018, 1: 592–600

    Article  CAS  Google Scholar 

  8. Gao S, Lin Y, Jiao X, Sun Y, Luo Q, Zhang W, Li D, Yang J, Xie Y. Nature, 2016, 529: 68–71

    Article  CAS  Google Scholar 

  9. Wang Y, Chen Z, Han P, Du Y, Gu Z, Xu X, Zheng G. ACS Catal, 2018, 8: 7113–7119

    Article  CAS  Google Scholar 

  10. Yang D, Zhu Q, Chen C, Liu H, Liu Z, Zhao Z, Zhang X, Liu S, Han B. Nat Commun, 2019, 10: 677

    Article  Google Scholar 

  11. Jiang K, Sandberg RB, Akey AJ, Liu X, Bell DC, Nørskov JK, Chan K, Wang H. Nat Catal, 2018, 1: 111–119

    Article  CAS  Google Scholar 

  12. Jeon HS, Kunze S, Scholten F, Roldan Cuenya B. ACS Catal, 2018, 8: 531–535

    Article  CAS  Google Scholar 

  13. Jung H, Lee SY, Lee CW, Cho MK, Won DH, Kim C, Oh HS, Min BK, Hwang YJ. J Am Chem Soc, 2019, 141: 4624–4633

    Article  CAS  Google Scholar 

  14. Ren D, Ang BSH, Yeo BS. ACS Catal, 2016, 6: 8239–8247

    Article  CAS  Google Scholar 

  15. Clark EL, Hahn C, Jaramillo TF, Bell AT. J Am Chem Soc, 2017, 139: 15848–15857

    Article  CAS  Google Scholar 

  16. Higgins D, Landers AT, Ji Y, Nitopi S, Morales-Guio CG, Wang L, Chan K, Hahn C, Jaramillo TF. ACS Energy Lett, 2018, 3: 2947–2955

    Article  CAS  Google Scholar 

  17. Duan YX, Meng FL, Liu KH, Yi SS, Li SJ, Yan JM, Jiang Q. Adv Mater, 2018, 30: 1706194

    Article  Google Scholar 

  18. Li S, Saranya G, Chen M, Zhu Y. Sci China Chem, 2020, 63: 722–730

    Article  CAS  Google Scholar 

  19. Chen Y, Fan Z, Wang J, Ling C, Niu W, Huang Z, Liu G, Chen B, Lai Z, Liu X, Li B, Zong Y, Gu L, Wang J, Wang X, Zhang H. J Am Chem Soc, 2020, 142: 12760–12766

    Article  CAS  Google Scholar 

  20. Xie MS, Xia BY, Li Y, Yan Y, Yang Y, Sun Q, Chan SH, Fisher A, Wang X. Energy Environ Sci, 2016, 9: 1687–1695

    Article  CAS  Google Scholar 

  21. Liu X, Xiao J, Peng H, Hong X, Chan K, Nørskov JK. Nat Commun, 2017, 8: 15438

    Article  CAS  Google Scholar 

  22. Zheng Y, Vasileff A, Zhou X, Jiao Y, Jaroniec M, Qiao SZ. J Am Chem Soc, 2019, 141: 7646–7659

    Article  CAS  Google Scholar 

  23. Hoang TTH, Verma S, Ma S, Fister TT, Timoshenko J, Frenkel AI, Kenis PJA, Gewirth AA. J Am Chem Soc, 2018, 140: 5791–5797

    Article  CAS  Google Scholar 

  24. Ren D, Fong J, Yeo BS. Nat Commun, 2018, 9: 925

    Article  Google Scholar 

  25. Lee S, Park G, Lee J. ACS Catal, 2017, 7: 8594–8604

    Article  CAS  Google Scholar 

  26. Zhou Y, Che F, Liu M, Zou C, Liang Z, De Luna P, Yuan H, Li J, Wang Z, Xie H, Li H, Chen P, Bladt E, Quintero-Bermudez R, Sham TK, Bals S, Hofkens J, Sinton D, Chen G, Sargent EH. Nat Chem, 2018, 10: 974–980

    Article  CAS  Google Scholar 

  27. Huang H, Jia H, Liu Z, Gao P, Zhao J, Luo Z, Yang J, Zeng J. Angew Chem Int Ed, 2017, 56: 3594–3598

    Article  CAS  Google Scholar 

  28. Gao D, Zegkinoglou I, Divins NJ, Scholten F, Sinev I, Grosse P, Roldan Cuenya B. ACS Nano, 2017, 11: 4825–4831

    Article  CAS  Google Scholar 

  29. Liang ZQ, Zhuang TT, Seifitokaldani A, Li J, Huang CW, Tan CS, Li Y, De Luna P, Dinh CT, Hu Y, Xiao Q, Hsieh PL, Wang Y, Li F, Quintero-Bermudez R, Zhou Y, Chen P, Pang Y, Lo SC, Chen LJ, Tan H, Xu Z, Zhao S, Sinton D, Sargent EH. Nat Commun, 2018, 9: 3828

    Article  Google Scholar 

  30. Zhao X, Xing Y, Zhao L, Lu S, Ahmad F, Zeng J. J Catal, 2018, 368: 155–162

    Article  CAS  Google Scholar 

  31. Li CW, Kanan MW. J Am Chem Soc, 2012, 134: 7231–7234

    Article  CAS  Google Scholar 

  32. Gao D, Scholten F, Roldan Cuenya B. ACS Catal, 2017, 7: 5112–5120

    Article  CAS  Google Scholar 

  33. Tang C, Zhang R, Lu W, Wang Z, Liu D, Hao S, Du G, Asiri AM, Sun X. Angew Chem Int Ed, 2017, 56: 842–846

    Article  CAS  Google Scholar 

  34. Wang R, Dong XY, Du J, Zhao JY, Zang SQ. Adv Mater, 2018, 30: 1703711

    Article  Google Scholar 

  35. Geng Z, Kong X, Chen W, Su H, Liu Y, Cai F, Wang G, Zeng J. Angew Chem Int Ed, 2018, 57: 6054–6059

    Article  CAS  Google Scholar 

  36. Kong X, Liu Y, Li P, Ke J, Liu Z, Ahmad F, Yan W, Li Z, Geng Z, Zeng J. Appl Catal B-Environ, 2020, 268: 118452

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Fund for Distinguished Young Scholars (21925204), the National Natural Science Foundation of China (U1932146, U19A2015, 21673214, and U1732272), National Key Research and Development Program of China (2019YFA0405600, 2017YFA0403402, and 2019YFA0405602), Key Research Program of Frontier Sciences of the CAS (QYZDB-SSW-SLH017), Fundamental Research Funds for the Central Universities, and USTC Research Funds of the Double First-Class Initiative (YD2340002002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhigang Geng, Jun Bao or Jie Zeng.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, X., Wang, C., Zheng, H. et al. Enhance the activity of multi-carbon products for Cu via P doping towards CO2 reduction. Sci. China Chem. 64, 1096–1102 (2021). https://doi.org/10.1007/s11426-020-9934-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9934-0

Navigation