Skip to main content
Log in

Enhancing the peroxidase-like activity of MoS2-based nanozymes by introducing attapulgite for antibacterial application and sensitive detection of glutathione

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanozymes are next-generation of nanomaterials with enzyme-like activities. In particular, nanozymes with peroxidase (POD)-like activity have been utilized in various fields, including antibacterial, detection, degradation, etc. However, their extensive applications were limited by their low catalytic activity currently. Herein, we have presented a composite nanozyme based on attapulgite (ATP) (Fe-ATP-MoS2 (FAM)), which exhibited enhanced POD-like activity (185.33 U·mg−1), 4.25 times higher than that of Fe-MoS2 (FM) (43.63 U·mg−1). The density functional theory (DFT) calculations indicated that the addition of ATP increased the electron density of metal centers (Mo and Fe). More importantly, Michaelis–Menten kinetics revealed that the introduction of ATP significantly enhanced the binding affinities of substrates through the pores of ATP, forming a highly concentrated substrate microenvironment and thus promoting its POD-like activity. Additionally, from molecular size and kinetic analysis, we proposed that the changes in substrate size before and after oxidation also significantly affected its Michaelis-constant (Km) value. Furthermore, we utilized FAM in the applications of highly effective antibacterial application and sensitive detection of glutathione (GSH). In conclusion, this work provides a novel approach for designing a highly efficient nanozyme based on natural mineral composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

    Article  CAS  PubMed  Google Scholar 

  2. Robert, A.; Meunier, B. How to define a nanozyme. ACS Nano 2022, 16, 6956–6959.

    Article  CAS  PubMed  Google Scholar 

  3. Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

    Article  CAS  PubMed  Google Scholar 

  4. Qiu, Z. W.; Duan, W.; Cao, S. F.; Zeng, T.; Zhao, T. Y.; Huang, J. K.; Lu, X. Q.; Zeng, J. B. Highly specific colorimetric probe for fluoride by triggering the intrinsic catalytic activity of a AgPt-Fe3O4 hybrid nanozyme encapsulated in SiO2 shells. Environ. Sci. Technol. 2022, 56, 1713–1723.

    Article  CAS  PubMed  Google Scholar 

  5. Shen, Y. Z.; Wei, Y. L.; Gao, X.; Nie, C.; Wang, J. L.; Wu, Y. N. Engineering an enzymatic cascade catalytic smartphone-based sensor for onsite visual ratiometric fluorescence-colorimetric dual-mode detection of methyl mercaptan. Environ. Sci. Technol. 2023, 57, 1680–1691.

    Article  CAS  PubMed  Google Scholar 

  6. Chandio, I.; Ai, Y. J.; Wu, L.; Liang, Q. L. Recent progress in MOFs-based nanozymes for biosensing. Nano Res. 2024, 17, 39–64.

    Article  Google Scholar 

  7. Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

    Article  CAS  PubMed  Google Scholar 

  8. Zhu, Y. L.; Wang, Z.; Zhao, R. X.; Zhou, Y. H.; Feng, L. L.; Gai, S. L.; Yang, P. P. Pt decorated Ti3C2Tx MXene with NIR-II light amplified nanozyme catalytic activity for efficient phototheranostics. ACS Nano 2022, 16, 3105–3118.

    Article  CAS  PubMed  Google Scholar 

  9. Hong, J. J.; Guo, Z. J.; Duan, D. H.; Zhang, Y.; Chen, X.; Li, Y. J.; Tu, Z.; Feng, L.; Chen, L.; Yan, X. Y. et al. Highly sensitive nanozyme strip: An effective tool for forensic material evidence identification. Nano Res. 2024, 17, 1785–1791.

    Article  CAS  Google Scholar 

  10. Kumari, A.; Sahoo, J.; De, M. 2D-MoS2-supported copper peroxide nanodots with enhanced nanozyme activity: Application in antibacterial activity. Nanoscale 2023, 15, 19801–19814.

    Article  CAS  PubMed  Google Scholar 

  11. Guo, Z. J.; Hong, J. J.; Song, N. N.; Liang, M. M. Single-atom nanozymes: From precisely engineering to extensive applications. Acc. Mater. Res. 2024, 5, 347–357.

    Article  CAS  Google Scholar 

  12. Wang, Z. W.; Wang, W. L.; Wang, J.; Wang, D. S.; Liu, M. L.; Wu, Q. Y.; Hu, H. Y. Single-atom catalysts with ultrahigh catalase-like activity through electron filling and orbital energy regulation. Adv. Funct. Mater. 2023, 33, 2209560.

    Article  CAS  Google Scholar 

  13. Fan, Y.; Yi, Y.; Rong, H. P.; Zhang, J. T. Silicon dioxide-protection boosting the peroxidase-like activity of Fe single-atom catalyst for combining chemo-photothermal therapy. Nano Res. 2024, 17, 4924–4933.

    Article  CAS  Google Scholar 

  14. Mei, L. Q.; Zhu, S.; Liu, Y. P.; Yin, W. Y.; Gu, Z. J.; Zhao, Y. L. An overview of the use of nanozymes in antibacterial applications. Chem. Eng. J. 2021, 418, 129431.

    Article  CAS  Google Scholar 

  15. Pang, H. H.; Ke, Y. C.; Li, N. S.; Chen, Y. T.; Huang, C. Y.; Wei, K. C.; Yang, H. W. A new lateral flow plasmonic biosensor based on gold-viral biomineralized nanozyme for on-site intracellular glutathione detection to evaluate drug-resistance level. Biosens. Bioelectron. 2020, 165, 112325.

    Article  CAS  PubMed  Google Scholar 

  16. Zhu, Z. L.; Du, S. S.; Du, Y. B.; Ren, J.; Ying, G. G.; Yan, Z. Glutathione reductase mediates drug resistance in glioblastoma cells by regulating redox homeostasis. J. Neurochem. 2018, 144, 93–104.

    Article  CAS  PubMed  Google Scholar 

  17. Esme, H.; Cemek, M.; Sezer, M.; Saglam, H.; Demir, A.; Melek, H.; Unlu, M. High levels of oxidative stress in patients with advanced lung cancer. Respirology 2008, 13, 112–116.

    Article  PubMed  Google Scholar 

  18. Singh, P.; Ojha, R. P.; Kumar, S.; Singh, A. K.; Prakash, R. Fe-doped MoS2 nanomaterials with amplified peroxidase mimetic activity for the colorimetric detection of glutathione in human serum. Mater. Chem. Phys. 2021, 267, 124684.

    Article  CAS  Google Scholar 

  19. Wang, K.; Sun, S. Y.; Golubev, Y. A.; Lin, S.; Liu, J.; Dong, F. Q.; Kotova, E. L.; Kotova, O. B. Intrinsic peroxidase-like clay mineral nanozyme-triggered cascade bioplatform with enhanced catalytic performance. Appl. Clay Sci. 2023, 246, 107196.

    Article  CAS  Google Scholar 

  20. Bao, W. X.; Tian, L. Y.; Wang, H.; Tang, A. D.; Yang, H. M. Breaking through the pH limitation of Fe1−xS nanozymes using component-modulated coupled nanoclay. Inorg. Chem. 2024, 63, 3366–3375.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, H.; Sarwar, M. T.; Tian, L. Y.; Bao, W. X.; Yang, H. M. Nanoclay modulates cation occupancy in manganese ferrite for catalytic antibacterial treatment. Inorg. Chem. 2022, 61, 17692–17702.

    Article  CAS  PubMed  Google Scholar 

  22. Feng, F.; Zhang, X.; Mu, B.; Wang, P. X.; Chen, Z. S.; Zhang, J. H.; Zhang, H. F.; Zhuang, J. L.; Zhao, L.; An, Q. et al. Attapulgite doped with Fe and Cu nanooxides as peroxidase nanozymes for antibacterial coatings. ACS Appl. Nano Mater. 2022, 5, 16720–16730.

    Article  CAS  Google Scholar 

  23. Peng, K.; Fu, L. J.; Ouyang, J.; Yang, H. M. Emerging parallel dual 2D composites: Natural clay mineral hybridizing MoS2 and interfacial structure. Adv. Funct. Mater. 2016, 26, 2666–2675.

    Article  CAS  Google Scholar 

  24. Li, Y.; Fu, R. Z.; Duan, Z. G.; Zhu, C. H.; Fan, D. D. Construction of multifunctional hydrogel based on the tannic acid-metal coating decorated MoS2 dual nanozyme for bacteria-infected wound healing. Bioact Mater. 2022, 9, 461–474.

    CAS  PubMed  Google Scholar 

  25. Liang, Y. L.; Yoo, H. D.; Li, Y. F.; Shuai, J.; Calderon, H. A.; Robles Hernandez, F. C.; Grabow, L. C.; Yao, Y. Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett. 2015, 15, 2194–2202.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou, C. Z.; Li, Z. P.; Liu, S. W.; Zhan, T. R.; Li, W. Q.; Wang, J. Q. Layered double hydroxides for tribological application: Recent advances and future prospective. Appl. Clay Sci. 2022, 221, 106466.

    Article  CAS  Google Scholar 

  27. Khawula, T. N. Y.; Raju, K.; Franklyn, P. J.; Sigalas, I.; Ozoemena, K. I. Symmetric pseudocapacitors based on molybdenum disulfide (MoS2)-modified carbon nanospheres: Correlating physicochemistry and synergistic interaction on energy storage. J. Mater. Chem. A 2016, 4, 6411–6425.

    Article  CAS  Google Scholar 

  28. Feng, L. P.; Zhang, L. X.; Zhang, S.; Chen, X.; Li, P.; Gao, Y.; Xie, S. J.; Zhang, A. C.; Wang, H. Plasma-assisted controllable doping of nitrogen into MoS2 nanosheets as efficient nanozymes with enhanced peroxidase-like catalysis activity. ACS Appl. Mater. Interfaces 2020, 12, 17547–17556.

    Article  CAS  PubMed  Google Scholar 

  29. Feng, W.; Chen, L.; Qin, M.; Zhou, X. J.; Zhang, Q. Q.; Miao, Y. K.; Qiu, K. X.; Zhang, Y. Z.; He, C. L. Flower-like PEGylated MoS2 nanoflakes for near-infrared photothermal cancer therapy. Sci. Rep. 2015, 5, 17422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hirata, T. In-situ observation of Mo–O stretching vibrations during the reduction of MoO3 with hydrogen by diffuse reflectance FTIR spectroscopy. Appl. Surf. Sci. 1989, 40, 179–181.

    Article  CAS  Google Scholar 

  31. Hassan, A.; Macedo, L. J. A.; de Souza, J. C. P.; Lima, F. C. D. A.; Crespilho, F. N. A combined Far-FTIR, FTIR spectromicroscopy, and DFT study of the effect of DNA binding on the [4Fe4S] cluster site in endoIII. Sci. Rep. 2020, 10, 1931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, D.; Wang, Y. Q.; Chen, X. D.; Zhu, Y. K.; Zhan, K.; Cheng, H. B.; Wang, X. Y. Layer-by-layer thinning of two-dimensional MoS2 films by using a focused ion beam. Nanoscale 2016, 8, 4107–4112.

    Article  CAS  PubMed  Google Scholar 

  33. Wu, L. H.; Luo, Y.; Wang, C. F.; Wu, S. L.; Zheng, Y. F.; Li, Z. Y.; Cui, Z. D.; Liang, Y. Q.; Zhu, S. L.; Shen, J. et al. Self-driven electron transfer biomimetic enzymatic catalysis of bismuth-doped PCN-222 MOF for rapid therapy of bacteria-infected wounds. ACS Nano 2023, 17, 1448–1463.

    Article  CAS  Google Scholar 

  34. Yu, F. Q.; Huang, Y. Z.; Cole, A. J.; Yang, V. C. The artificial peroxidase activity of magnetic iron oxide nanoparticles and its application to glucose detection. Biomaterials 2009, 30, 4716–4722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

    Article  CAS  PubMed  Google Scholar 

  36. Hao, J. Y.; Zhang, C.; Feng, C. X.; Wang, Q.; Liu, Z. Y.; Li, Y.; Mu, J. S.; Yang, E. C.; Wang, Y. An ultra-highly active nanozyme of Fe,N co-doped ultrathin hollow carbon framework for antibacterial application. Chin. Chem. Lett. 2023, 34, 107650.

    Article  CAS  Google Scholar 

  37. Wang, L. W.; Gao, F. N.; Wang, A. Z.; Chen X. Y.; Li, H.; Zhang, X.; Zheng, H.; Ji, R.; Li, B.; Yu, X. et al. Defect-rich adhesive molybdenum disulfide/rGO vertical heterostructures with enhanced nanozyme activity for smart bacterial killing application. Adv. Mater. 2020, 32, 2005423.

    Article  CAS  Google Scholar 

  38. Aneesh, K.; Vusa, C. S. R.; Berchmans, S. Enhanced peroxidase-like activity of CuWO4 nanoparticles for the detection of NADH and hydrogen peroxide. Sens. Actuators B Chem. 2017, 253, 723–730.

    Article  CAS  Google Scholar 

  39. Zhao, Z. Q.; Sun, C.; Li, Y.; Yu, Q. L.; Jin, Z.; Wang, M. W.; Liang, L. F.; Zhang, Y. B. Driving microbial sulfur cycle for phenol degradation coupled with Cr(VI) reduction via Fe(III)/Fe(II) transformation. Chem. Eng. J. 2020, 393, 124801.

    Article  CAS  Google Scholar 

  40. Su, L. N.; Wang, P. F.; Ma, X. L.; Wang, J. H.; Zhan, S. H. Regulating local electron density of iron single sites by introducing nitrogen vacancies for efficient photo-fenton process. Angew. Chem., Int. Ed. 2021, 60, 21261–21266.

    Article  CAS  Google Scholar 

  41. Wang, Z. H.; Wu, F. G. Emerging single-atom catalysts/nanozymes for catalytic biomedical applications. Adv. Healthcare Mater. 2022, 11, 2101682.

    Article  CAS  Google Scholar 

  42. Zhang, X. Y.; Zhang, S. T.; Yang, Z. X.; Wang, Z. H.; Tian, X.; Zhou, R. H. Self-cascade MoS2 nanozymes for efficient intracellular antioxidation and hepatic fibrosis therapy. Nanoscale 2021, 13, 12613–12622.

    Article  CAS  PubMed  Google Scholar 

  43. Zhu, H. J.; Zan, W. Y.; Chen, W. L.; Jiang, W. B.; Ding, X. G.; Li, B. L.; Mu, Y. W.; Wang, L.; Garaj, S.; Leong, D. T. Defect-rich molybdenum sulfide quantum dots for amplified photoluminescence and photonics-driven reactive oxygen species generation. Adv. Mater. 2022, 34, 2200004.

    Article  CAS  Google Scholar 

  44. Dong, H. J.; Du, W.; Dong, J.; Che, R. C.; Kong, F.; Cheng, W. L.; Ma, M.; Gu, N.; Zhang, Y. Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions. Nat. Commun. 2022, 13, 5365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang, H. M.; Tang, A. D.; Ouyang, J.; Li, M.; Mann, S. From natural attapulgite to mesoporous materials: Methodology, characterization and structural evolution. J. Phys. Chem. B 2010, 114, 2390–2398.

    Article  CAS  PubMed  Google Scholar 

  46. Song, N. N.; Yu, Y.; Zhang, Y. N.; Wang, Z. D.; Guo, Z. J.; Zhang, J. L.; Zhang, C. B.; Liang, M. M. Bioinspired hierarchical self-assembled nanozyme for efficient antibacterial treatment. Adv. Mater. 2024, 16, 2210455.

    Article  Google Scholar 

  47. Kim, T. I.; Kwon, B.; Yoon, J.; Park, I. J.; Bang, G. S.; Park, Y.; Seo, Y. S.; Choi, S. Y. Antibacterial activities of graphene oxide-molybdenum disulfide nanocomposite films. ACS Appl. Mater. Interfaces 2017, 9, 7908–7917.

    Article  CAS  PubMed  Google Scholar 

  48. Ranji-Burachaloo, H.; Karimi, F.; Xie, K.; Fu, Q.; Gurr, P. A.; Dunstan, D. E.; Qiao, G. G. MOF-mediated destruction of cancer using the cell’s own hydrogen peroxide. ACS Appl. Mater. Interfaces 2017, 9, 33599–33608.

    Article  CAS  PubMed  Google Scholar 

  49. Djorić, D.; Kristich, C. J. Oxidative stress enhances cephalosporin resistance of Enterococcus faecalis through activation of a two-component signaling system. Antimicrob. Agents Chemother. 2014, 59, 159–169.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52072347 and 22272152), the Foundation of Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (No. CMAR-2022-04), and Beijing Nova project (No. 20220484155).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yihe Zhang, Zhanjun Guo or Lu Zhao.

Electronic Supplementary Material

12274_2024_6685_MOESM1_ESM.pdf

Enhancing the peroxidase-like activity of MoS2-based nanozymes by introducing attapulgite for antibacterial application and sensitive detection of glutathione

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, F., Zhang, Y., Zhang, X. et al. Enhancing the peroxidase-like activity of MoS2-based nanozymes by introducing attapulgite for antibacterial application and sensitive detection of glutathione. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6685-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6685-3

Keywords

Navigation